On complete-cocomplete subspaces of an inner product space
Applications of Mathematics, Tome 50 (2005) no. 2, pp. 103-114
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this note we give a measure-theoretic criterion for the completeness of an inner product space. We show that an inner product space $S$ is complete if and only if there exists a $\sigma $-additive state on $C(S)$, the orthomodular poset of complete-cocomplete subspaces of $S$. We then consider the problem of whether every state on $E(S)$, the class of splitting subspaces of $S$, can be extended to a Hilbertian state on $E(\bar{S})$; we show that for the dense hyperplane $S$ (of a separable Hilbert space) constructed by P. Pták and H. Weber in Proc. Am. Math. Soc. 129 (2001), 2111–2117, every state on $E(S)$ is a restriction of a state on $E(\bar{S})$.
DOI :
10.1007/s10492-005-0007-1
Classification :
03G12, 28A12, 46C05, 46N50, 81P10
Keywords: Hilbert space; inner product space; orthogonally closed subspace; complete and cocomplete subspaces; finitely and $\sigma $-additive state
Keywords: Hilbert space; inner product space; orthogonally closed subspace; complete and cocomplete subspaces; finitely and $\sigma $-additive state
@article{10_1007_s10492_005_0007_1, author = {Buhagiar, David and Chetcuti, Emanuel}, title = {On complete-cocomplete subspaces of an inner product space}, journal = {Applications of Mathematics}, pages = {103--114}, publisher = {mathdoc}, volume = {50}, number = {2}, year = {2005}, doi = {10.1007/s10492-005-0007-1}, mrnumber = {2125153}, zbl = {1099.81010}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-005-0007-1/} }
TY - JOUR AU - Buhagiar, David AU - Chetcuti, Emanuel TI - On complete-cocomplete subspaces of an inner product space JO - Applications of Mathematics PY - 2005 SP - 103 EP - 114 VL - 50 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-005-0007-1/ DO - 10.1007/s10492-005-0007-1 LA - en ID - 10_1007_s10492_005_0007_1 ER -
%0 Journal Article %A Buhagiar, David %A Chetcuti, Emanuel %T On complete-cocomplete subspaces of an inner product space %J Applications of Mathematics %D 2005 %P 103-114 %V 50 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-005-0007-1/ %R 10.1007/s10492-005-0007-1 %G en %F 10_1007_s10492_005_0007_1
Buhagiar, David; Chetcuti, Emanuel. On complete-cocomplete subspaces of an inner product space. Applications of Mathematics, Tome 50 (2005) no. 2, pp. 103-114. doi: 10.1007/s10492-005-0007-1
Cité par Sources :