The Minimum Moving Spanning Tree Problem
Journal of Graph Algorithms and Applications, Tome 27 (2023) no. 1, pp. 1-18.

Voir la notice de l'article provenant de la source Journal of Graph Algorythms and Applications website

We investigate the problem of finding a spanning tree of a set of $n$ moving points in $\mathbb{R}^{\dim}$ that minimizes the maximum total weight (under any convex distance function) or the maximum bottleneck throughout the motion. The output is a single tree, i.e., it does not change combinatorially during the movement of the points. We call these trees a minimum moving spanning tree, and a minimum bottleneck moving spanning tree, respectively. We show that, although finding the minimum bottleneck moving spanning tree can be done in $O(n^2)$ time when $\dim$ is a constant, it is NP-hard to compute the minimum moving spanning tree even for $\dim=2$. We provide a simple $O(n^2)$-time 2-approximation and a $O(n \log n)$-time $(2+\varepsilon)$-approximation for the latter problem, for any constant $\dim$ and any constant $\varepsilon>0$.
DOI : 10.7155/jgaa.00607
Keywords: minimum spanning tree, moving points, NP-hardness, convex distance function, approximation algorithms
@article{JGAA_2023_27_1_a0,
     author = {Hugo Akitaya and Ahmad Biniaz and Prosenjit Bose and Jean-Lou De Carufel and Anil Maheshwari and Lu{\'\i}s Fernando Schultz Xavier da Silveira and Michiel Smid},
     title = {The {Minimum} {Moving} {Spanning} {Tree} {Problem}},
     journal = {Journal of Graph Algorithms and Applications},
     pages = {1--18},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2023},
     doi = {10.7155/jgaa.00607},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00607/}
}
TY  - JOUR
AU  - Hugo Akitaya
AU  - Ahmad Biniaz
AU  - Prosenjit Bose
AU  - Jean-Lou De Carufel
AU  - Anil Maheshwari
AU  - Luís Fernando Schultz Xavier da Silveira
AU  - Michiel Smid
TI  - The Minimum Moving Spanning Tree Problem
JO  - Journal of Graph Algorithms and Applications
PY  - 2023
SP  - 1
EP  - 18
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00607/
DO  - 10.7155/jgaa.00607
LA  - en
ID  - JGAA_2023_27_1_a0
ER  - 
%0 Journal Article
%A Hugo Akitaya
%A Ahmad Biniaz
%A Prosenjit Bose
%A Jean-Lou De Carufel
%A Anil Maheshwari
%A Luís Fernando Schultz Xavier da Silveira
%A Michiel Smid
%T The Minimum Moving Spanning Tree Problem
%J Journal of Graph Algorithms and Applications
%D 2023
%P 1-18
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00607/
%R 10.7155/jgaa.00607
%G en
%F JGAA_2023_27_1_a0
Hugo Akitaya; Ahmad Biniaz; Prosenjit Bose; Jean-Lou De Carufel; Anil Maheshwari; Luís Fernando Schultz Xavier da Silveira; Michiel Smid. The Minimum Moving Spanning Tree Problem. Journal of Graph Algorithms and Applications, Tome 27 (2023) no. 1, pp. 1-18. doi : 10.7155/jgaa.00607. http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00607/

Cité par Sources :