Bipartite and Series-Parallel Graphs Without Planar Lombardi Drawings
Journal of Graph Algorithms and Applications, Tome 25 (2021) no. 1, pp. 549-562.

Voir la notice de l'article provenant de la source Journal of Graph Algorythms and Applications website

We find a family of planar bipartite graphs all of whose Lombardi drawings (drawings with circular arcs for edges, meeting at equal angles at the vertices) are nonplanar. We also find families of embedded series-parallel graphs and apex-trees (graphs formed by adding one vertex to a tree) for which there is no planar Lombardi drawing consistent with the given embedding.
DOI : 10.7155/jgaa.00571
Keywords: Lombardi drawing, bipartite graphs, series-parallel graphs, nonplanarity
@article{JGAA_2021_25_1_a24,
     author = {David Eppstein},
     title = {Bipartite and {Series-Parallel} {Graphs} {Without} {Planar} {Lombardi} {Drawings}},
     journal = {Journal of Graph Algorithms and Applications},
     pages = {549--562},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2021},
     doi = {10.7155/jgaa.00571},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00571/}
}
TY  - JOUR
AU  - David Eppstein
TI  - Bipartite and Series-Parallel Graphs Without Planar Lombardi Drawings
JO  - Journal of Graph Algorithms and Applications
PY  - 2021
SP  - 549
EP  - 562
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00571/
DO  - 10.7155/jgaa.00571
LA  - en
ID  - JGAA_2021_25_1_a24
ER  - 
%0 Journal Article
%A David Eppstein
%T Bipartite and Series-Parallel Graphs Without Planar Lombardi Drawings
%J Journal of Graph Algorithms and Applications
%D 2021
%P 549-562
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00571/
%R 10.7155/jgaa.00571
%G en
%F JGAA_2021_25_1_a24
David Eppstein. Bipartite and Series-Parallel Graphs Without Planar Lombardi Drawings. Journal of Graph Algorithms and Applications, Tome 25 (2021) no. 1, pp. 549-562. doi : 10.7155/jgaa.00571. http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00571/

Cité par Sources :