Revising the Fellows-Kaschube $K_{3,3}$ Search
Journal of graph algorithms and applications, Tome 25 (2021) no. 1, pp. 513-520 Cet article a éte moissonné depuis la source Journal of Graph Algorythms and Applications website

Voir la notice de l'article

The first algorithm to achieve linear-time performance searching for and identifying a subgraph homeomorphic to $K_{3,3}$ is due to Fellows and Kaschube. Part of the proof of correctness depends on three cases of a straddling bridge of a subgraph homeomorphic to $K_5$ in an input graph. This paper presents a missing fourth case and revises the algorithm with an additional $K_{3,3}$ homeomorph isolator for the condition corresponding to the missing case. This paper also discusses why the prior proof of correctness missed the fourth case and presents a new proof of correctness showing that there are no other missing cases.
DOI : 10.7155/jgaa.00569
Keywords: subgraph homeomorphism, homeomorphic subgraph search, algorithm analysis
@article{JGAA_2021_25_1_a22,
     author = {John Boyer},
     title = {Revising the {Fellows-Kaschube} $K_{3,3}$ {Search}},
     journal = {Journal of graph algorithms and applications},
     pages = {513--520},
     year = {2021},
     volume = {25},
     number = {1},
     doi = {10.7155/jgaa.00569},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00569/}
}
TY  - JOUR
AU  - John Boyer
TI  - Revising the Fellows-Kaschube $K_{3,3}$ Search
JO  - Journal of graph algorithms and applications
PY  - 2021
SP  - 513
EP  - 520
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00569/
DO  - 10.7155/jgaa.00569
LA  - en
ID  - JGAA_2021_25_1_a22
ER  - 
%0 Journal Article
%A John Boyer
%T Revising the Fellows-Kaschube $K_{3,3}$ Search
%J Journal of graph algorithms and applications
%D 2021
%P 513-520
%V 25
%N 1
%U http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00569/
%R 10.7155/jgaa.00569
%G en
%F JGAA_2021_25_1_a22
John Boyer. Revising the Fellows-Kaschube $K_{3,3}$ Search. Journal of graph algorithms and applications, Tome 25 (2021) no. 1, pp. 513-520. doi: 10.7155/jgaa.00569

Cité par Sources :