The number of crossings in multigraphs with no empty lens
Journal of Graph Algorithms and Applications, Tome 25 (2021) no. 1, pp. 383-396.

Voir la notice de l'article provenant de la source Journal of Graph Algorythms and Applications website

Let $G$ be a multigraph with $n$ vertices and $e>4n$ edges, drawn in the plane such that any two parallel edges form a simple closed curve with at least one vertex in its interior and at least one vertex in its exterior. Pach and Tóth [A Crossing Lemma for Multigraphs, SoCG 2018] extended the Crossing Lemma of Ajtai et al. [Crossing-free subgraphs, North-Holland Mathematics Studies, 1982] and Leighton [Complexity issues in VLSI, Foundations of computing series, 1983] by showing that if no two adjacent edges cross and every pair of nonadjacent edges cross at most once, then the number of edge crossings in $G$ is at least $\alpha e^3/n^2$, for a suitable constant $\alpha>0$. The situation turns out to be quite different if nonparallel edges are allowed to cross any number of times. It is proved that in this case the number of crossings in $G$ is at least $\alpha e^{2.5}/n^{1.5}$. The order of magnitude of this bound cannot be improved.
DOI : 10.7155/jgaa.00563
Keywords: graph drawing, crossings, crossing lemma, multigraphs, separated drawing
@article{JGAA_2021_25_1_a16,
     author = {Michael Kaufmann and J\'anos Pach and G\'eza T\'oth and Torsten Ueckerdt},
     title = {The number of crossings in multigraphs with no empty lens},
     journal = {Journal of Graph Algorithms and Applications},
     pages = {383--396},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2021},
     doi = {10.7155/jgaa.00563},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00563/}
}
TY  - JOUR
AU  - Michael Kaufmann
AU  - János Pach
AU  - Géza Tóth
AU  - Torsten Ueckerdt
TI  - The number of crossings in multigraphs with no empty lens
JO  - Journal of Graph Algorithms and Applications
PY  - 2021
SP  - 383
EP  - 396
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00563/
DO  - 10.7155/jgaa.00563
LA  - en
ID  - JGAA_2021_25_1_a16
ER  - 
%0 Journal Article
%A Michael Kaufmann
%A János Pach
%A Géza Tóth
%A Torsten Ueckerdt
%T The number of crossings in multigraphs with no empty lens
%J Journal of Graph Algorithms and Applications
%D 2021
%P 383-396
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00563/
%R 10.7155/jgaa.00563
%G en
%F JGAA_2021_25_1_a16
Michael Kaufmann; János Pach; Géza Tóth; Torsten Ueckerdt. The number of crossings in multigraphs with no empty lens. Journal of Graph Algorithms and Applications, Tome 25 (2021) no. 1, pp. 383-396. doi : 10.7155/jgaa.00563. http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00563/

Cité par Sources :