Circumference of essentially 4-connected planar triangulations
Journal of Graph Algorithms and Applications, Tome 25 (2021) no. 1, pp. 121-132.

Voir la notice de l'article provenant de la source Journal of Graph Algorythms and Applications website

A $3$-connected graph $G$ is essentially $4$-connected if, for any $3$-cut $S\subseteq V(G)$ of $G$, at most one component of $G-S$ contains at least two vertices. We prove that every essentially $4$-connected maximal planar graph $G$ on $n$ vertices contains a cycle of length at least $\frac{2}{3}(n+4)$; moreover, this bound is sharp.
DOI : 10.7155/jgaa.00552
Keywords: circumference, long cycle, triangulation, essentially 4-connected, planar graph
@article{JGAA_2021_25_1_a5,
     author = {Igor Fabrici and Jochen Harant and Samuel Mohr and Jens Schmidt},
     title = {Circumference of essentially 4-connected planar triangulations},
     journal = {Journal of Graph Algorithms and Applications},
     pages = {121--132},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2021},
     doi = {10.7155/jgaa.00552},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00552/}
}
TY  - JOUR
AU  - Igor Fabrici
AU  - Jochen Harant
AU  - Samuel Mohr
AU  - Jens Schmidt
TI  - Circumference of essentially 4-connected planar triangulations
JO  - Journal of Graph Algorithms and Applications
PY  - 2021
SP  - 121
EP  - 132
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00552/
DO  - 10.7155/jgaa.00552
LA  - en
ID  - JGAA_2021_25_1_a5
ER  - 
%0 Journal Article
%A Igor Fabrici
%A Jochen Harant
%A Samuel Mohr
%A Jens Schmidt
%T Circumference of essentially 4-connected planar triangulations
%J Journal of Graph Algorithms and Applications
%D 2021
%P 121-132
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00552/
%R 10.7155/jgaa.00552
%G en
%F JGAA_2021_25_1_a5
Igor Fabrici; Jochen Harant; Samuel Mohr; Jens Schmidt. Circumference of essentially 4-connected planar triangulations. Journal of Graph Algorithms and Applications, Tome 25 (2021) no. 1, pp. 121-132. doi : 10.7155/jgaa.00552. http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00552/

Cité par Sources :