Graph Motif Problems Parameterized by Dual
Journal of Graph Algorithms and Applications, Tome 24 (2020) no. 3, pp. 371-396.

Voir la notice de l'article provenant de la source Journal of Graph Algorythms and Applications website

Let $G=(V,E)$ be a vertex-colored graph, where $C$ is the set of colors used to color $V$. The ${\rm G{\small RAPH}~M{\small OTIF}}$ (or $\rm GM$) problem takes as input $G$, a multiset $M$ of colors built from $C$, and asks whether there is a subset $S\subseteq V$ such that (i) $G[S]$ is connected and (ii) the multiset of colors obtained from $S$ equals $M$. The ${\rm C{\small OLORFUL}~G{\small RAPH}~M{\small OTIF}}$ (or ${\rm CGM}$) problem is the special case of $\rm GM$ in which $M$ is a set, and the ${\rm L{\small IST-COLORED}~G{\small RAPH}~M{\small OTIF}}$ (or $\rm LGM$) problem is the extension of $\rm GM$ in which each vertex $v$ of $V$ may choose its color from a list $\mathcal L(v)\subseteq C$ of colors. We study the three problems $\rm GM$, $\rm CGM$, and $\rm LGM$, parameterized by the dual parameter $\ell:=|V|-|M|$. For general graphs, we show that, assuming the strong exponential time hypothesis, $\rm CGM$ has no $(2-\epsilon)^\ell\cdot |V|^{\mathcal O(1)}$-time algorithm, which implies that a previous algorithm, running in $\mathcal O(2^\ell\cdot |E|)$ time is optimal [Betzler et al., IEEE/ACM TCBB 2011]. We also prove that $\rm LGM$ is W[1]-hard with respect to $\ell$ even if we restrict ourselves to lists of at most two colors. Finally, we show that if the input graph is a tree, then $\rm GM$ can be solved in $\mathcal O(3^\ell\cdot |V|)$ time but admits no polynomial-size problem kernel, while $\rm CGM$ can be solved in $\mathcal O(\sqrt{2}^{\ell} + |V|)$ time and admits a polynomial-size problem kernel.
DOI : 10.7155/jgaa.00538
Keywords: Subgraph problem, Vertex-colored graphs, NP-hard problem, Fixed-parameter tractability
@article{JGAA_2020_24_3_a11,
     author = {Guillaume Fertin and Christian Komusiewicz},
     title = {Graph {Motif} {Problems} {Parameterized} by {Dual}},
     journal = {Journal of Graph Algorithms and Applications},
     pages = {371--396},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2020},
     doi = {10.7155/jgaa.00538},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00538/}
}
TY  - JOUR
AU  - Guillaume Fertin
AU  - Christian Komusiewicz
TI  - Graph Motif Problems Parameterized by Dual
JO  - Journal of Graph Algorithms and Applications
PY  - 2020
SP  - 371
EP  - 396
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00538/
DO  - 10.7155/jgaa.00538
LA  - en
ID  - JGAA_2020_24_3_a11
ER  - 
%0 Journal Article
%A Guillaume Fertin
%A Christian Komusiewicz
%T Graph Motif Problems Parameterized by Dual
%J Journal of Graph Algorithms and Applications
%D 2020
%P 371-396
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00538/
%R 10.7155/jgaa.00538
%G en
%F JGAA_2020_24_3_a11
Guillaume Fertin; Christian Komusiewicz. Graph Motif Problems Parameterized by Dual. Journal of Graph Algorithms and Applications, Tome 24 (2020) no. 3, pp. 371-396. doi : 10.7155/jgaa.00538. http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00538/

Cité par Sources :