Not all planar graphs are in PURE-4-DIR
Journal of Graph Algorithms and Applications, Tome 24 (2020) no. 3, pp. 293-301.

Voir la notice de l'article provenant de la source Journal of Graph Algorythms and Applications website

We prove that some planar graphs are not intersection graphs of segments if only four slopes are allowed for the segments, and if parallel segments do not intersect. This refutes a conjecture of D. West [D. West, SIAM J. Discrete Math. Newsletter, 1991].
DOI : 10.7155/jgaa.00533
Keywords: intersection graphs, planar graphs, segments
@article{JGAA_2020_24_3_a7,
     author = {Daniel Gon\c{c}alves},
     title = {Not all planar graphs are in {PURE-4-DIR}},
     journal = {Journal of Graph Algorithms and Applications},
     pages = {293--301},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2020},
     doi = {10.7155/jgaa.00533},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00533/}
}
TY  - JOUR
AU  - Daniel Gonçalves
TI  - Not all planar graphs are in PURE-4-DIR
JO  - Journal of Graph Algorithms and Applications
PY  - 2020
SP  - 293
EP  - 301
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00533/
DO  - 10.7155/jgaa.00533
LA  - en
ID  - JGAA_2020_24_3_a7
ER  - 
%0 Journal Article
%A Daniel Gonçalves
%T Not all planar graphs are in PURE-4-DIR
%J Journal of Graph Algorithms and Applications
%D 2020
%P 293-301
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00533/
%R 10.7155/jgaa.00533
%G en
%F JGAA_2020_24_3_a7
Daniel Gonçalves. Not all planar graphs are in PURE-4-DIR. Journal of Graph Algorithms and Applications, Tome 24 (2020) no. 3, pp. 293-301. doi : 10.7155/jgaa.00533. http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00533/

Cité par Sources :