Parameterized Complexity of Safe Set
Journal of Graph Algorithms and Applications, Tome 24 (2020) no. 3, pp. 215-245.

Voir la notice de l'article provenant de la source Journal of Graph Algorythms and Applications website

In this paper we study the problem of finding a small safe set $S$ in a graph $G$, i.e., a non-empty set of vertices such that no connected component of $G[S]$ is adjacent to a larger component in $G - S$. We enhance our understanding of the problem from the viewpoint of parameterized complexity by showing that (1) the problem is W[2]-hard when parameterized by the pathwidth $\mathsf{pw}$ and cannot be solved in time $n^{o(\mathsf{pw})}$ unless the ETH is false, (2) it admits no polynomial kernel parameterized by the vertex cover number $\mathsf{vc}$ unless $\mathrm{PH} = \Sigma^{\mathrm{p}}_{3}$, but (3) it is fixed-parameter tractable (FPT) when parameterized by the neighborhood diversity $\mathsf{nd}$, and (4) it can be solved in time $n^{f(\mathsf{cw})}$ for some double exponential function $f$ where $\mathsf{cw}$ is the clique-width. We also present (5) a faster fixed-parameter algorithm when parameterized by the solution size.
DOI : 10.7155/jgaa.00528
Keywords: safe set, parameterized complexity, vulnerability parameter, pathwidth, clique-width
@article{JGAA_2020_24_3_a4,
     author = {R\'emy Belmonte and Tesshu Hanaka and Ioannis Katsikarelis and Michael Lampis and Hirotaka Ono and Yota Otachi},
     title = {Parameterized {Complexity} of {Safe} {Set}},
     journal = {Journal of Graph Algorithms and Applications},
     pages = {215--245},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2020},
     doi = {10.7155/jgaa.00528},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00528/}
}
TY  - JOUR
AU  - Rémy Belmonte
AU  - Tesshu Hanaka
AU  - Ioannis Katsikarelis
AU  - Michael Lampis
AU  - Hirotaka Ono
AU  - Yota Otachi
TI  - Parameterized Complexity of Safe Set
JO  - Journal of Graph Algorithms and Applications
PY  - 2020
SP  - 215
EP  - 245
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00528/
DO  - 10.7155/jgaa.00528
LA  - en
ID  - JGAA_2020_24_3_a4
ER  - 
%0 Journal Article
%A Rémy Belmonte
%A Tesshu Hanaka
%A Ioannis Katsikarelis
%A Michael Lampis
%A Hirotaka Ono
%A Yota Otachi
%T Parameterized Complexity of Safe Set
%J Journal of Graph Algorithms and Applications
%D 2020
%P 215-245
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00528/
%R 10.7155/jgaa.00528
%G en
%F JGAA_2020_24_3_a4
Rémy Belmonte; Tesshu Hanaka; Ioannis Katsikarelis; Michael Lampis; Hirotaka Ono; Yota Otachi. Parameterized Complexity of Safe Set. Journal of Graph Algorithms and Applications, Tome 24 (2020) no. 3, pp. 215-245. doi : 10.7155/jgaa.00528. http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00528/

Cité par Sources :