Pole Dancing: 3D Morphs for Tree Drawings
Journal of Graph Algorithms and Applications, Special issue on Selected papers from the Twenty-sixth International Symposium on Graph Drawing and Network Visualization, GD 2018 , Tome 23 (2019) no. 3, pp. 579-602.

Voir la notice de l'article provenant de la source Journal of Graph Algorythms and Applications website

We study the question whether a crossing-free 3D morph between two straight-line drawings of an $n$-vertex tree $T$ can be constructed consisting of a small number of linear morphing steps. We look both at the case in which the two given drawings are two-dimensional and at the one in which they are three-dimensional. In the former setting we prove that a crossing-free 3D morph always exists with $O({rpw}(T))\subseteq O(\log n)$ steps, where ${rpw}(T)$ is the rooted pathwidth or Strahler number of $T$, while for the latter setting $\Theta(n)$ steps are always sufficient and sometimes necessary.
DOI : 10.7155/jgaa.00503
Keywords: graph drawing, morph, crossing-free 3D drawing, straight-line drawing, tree drawing
@article{JGAA_2019_23_3_a5,
     author = {Elena Arseneva and Prosenjit Bose and Pilar Cano and Anthony D'Angelo and Vida Dujmovi\'c and Fabrizio Frati and Stefan Langerman and Alessandra Tappini},
     title = {Pole {Dancing:} {3D} {Morphs} for {Tree} {Drawings}},
     journal = {Journal of Graph Algorithms and Applications},
     pages = {579--602},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2019},
     doi = {10.7155/jgaa.00503},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00503/}
}
TY  - JOUR
AU  - Elena Arseneva
AU  - Prosenjit Bose
AU  - Pilar Cano
AU  - Anthony D'Angelo
AU  - Vida Dujmović
AU  - Fabrizio Frati
AU  - Stefan Langerman
AU  - Alessandra Tappini
TI  - Pole Dancing: 3D Morphs for Tree Drawings
JO  - Journal of Graph Algorithms and Applications
PY  - 2019
SP  - 579
EP  - 602
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00503/
DO  - 10.7155/jgaa.00503
LA  - en
ID  - JGAA_2019_23_3_a5
ER  - 
%0 Journal Article
%A Elena Arseneva
%A Prosenjit Bose
%A Pilar Cano
%A Anthony D'Angelo
%A Vida Dujmović
%A Fabrizio Frati
%A Stefan Langerman
%A Alessandra Tappini
%T Pole Dancing: 3D Morphs for Tree Drawings
%J Journal of Graph Algorithms and Applications
%D 2019
%P 579-602
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00503/
%R 10.7155/jgaa.00503
%G en
%F JGAA_2019_23_3_a5
Elena Arseneva; Prosenjit Bose; Pilar Cano; Anthony D'Angelo; Vida Dujmović; Fabrizio Frati; Stefan Langerman; Alessandra Tappini. Pole Dancing: 3D Morphs for Tree Drawings. Journal of Graph Algorithms and Applications, 
							Special issue on Selected papers from the Twenty-sixth International Symposium on Graph Drawing and Network Visualization, GD 2018
					, Tome 23 (2019) no. 3, pp. 579-602. doi : 10.7155/jgaa.00503. http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00503/

Cité par Sources :