Edge $k$-$q$-Colorability of Graphs
Journal of Graph Algorithms and Applications, Tome 22 (2018) no. 2, pp. 193-206.

Voir la notice de l'article provenant de la source Journal of Graph Algorythms and Applications website

Given positive integers $k$, $q$, we say that a graph is edge $k$-$q$-colorable if its edges can be colored in such a way that the number of colors incident to each vertex is at most $q$ and that the size of a largest color class is at most $k$. The problem of minimizing $k$ for a given $q$ was considered in [T. Larjomaa and A. Popa, The min-max Edge q-coloring Problem, Journal of Graph Algorithms and Applications, vol 19(1) pp. 505-528 (2015)]. In this paper, we first fix $k=2$ and give an $O(\min\;\{m^2\sqrt{n/\log m}\;,\;nm^{1.5}\})$-time algorithm which given an arbitrary graph $G$ with $n$ vertices and $m$ edges, and a positive integer $q$ decides whether $G$ is $2$-$q$-colorable and outputs a $2$-$q$-coloring if such a coloring exists. Then, we fix $q=2$ and we focus on cubic graphs. In particular, we prove that every cubic graph admits a $4$-$2$-coloring such that the corresponding edge decomposition uses only paths. We give an $O(n\log ^2n)$-time algorithm constructing such a decomposition.
@article{JGAA_2018_22_2_a2,
     author = {Selma Djelloul and Odile Favaron and Mekkia Kouider},
     title = {Edge $k$-$q${-Colorability} of {Graphs}},
     journal = {Journal of Graph Algorithms and Applications},
     pages = {193--206},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2018},
     doi = {10.7155/jgaa.00464},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00464/}
}
TY  - JOUR
AU  - Selma Djelloul
AU  - Odile Favaron
AU  - Mekkia Kouider
TI  - Edge $k$-$q$-Colorability of Graphs
JO  - Journal of Graph Algorithms and Applications
PY  - 2018
SP  - 193
EP  - 206
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00464/
DO  - 10.7155/jgaa.00464
LA  - en
ID  - JGAA_2018_22_2_a2
ER  - 
%0 Journal Article
%A Selma Djelloul
%A Odile Favaron
%A Mekkia Kouider
%T Edge $k$-$q$-Colorability of Graphs
%J Journal of Graph Algorithms and Applications
%D 2018
%P 193-206
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00464/
%R 10.7155/jgaa.00464
%G en
%F JGAA_2018_22_2_a2
Selma Djelloul; Odile Favaron; Mekkia Kouider. Edge $k$-$q$-Colorability of Graphs. Journal of Graph Algorithms and Applications, Tome 22 (2018) no. 2, pp. 193-206. doi : 10.7155/jgaa.00464. http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00464/

Cité par Sources :