On the Maximum Crossing Number
Journal of Graph Algorithms and Applications, Special Issue on Graph Drawing Beyond Planarity , Tome 22 (2018) no. 1, pp. 67-87.

Voir la notice de l'article provenant de la source Journal of Graph Algorythms and Applications website

Research about crossings is typically about minimization. In this paper, we consider maximizing the number of crossings over all possible ways to draw a given graph in the plane. Alpert et al. [Electron. J. Combin., 2009] conjectured that any graph has a convex straight-line drawing, that is, a drawing with vertices in convex position, that maximizes the number of edge crossings. We disprove this conjecture by constructing a planar graph on twelve vertices that admits a non-convex drawing with more crossings than any convex drawing. Bald et al. [Proc. COCOON, 2016] showed that it is NP-hard to compute the maximum number of crossings of a geometric graph and that the weighted geometric case is NP-hard to approximate. We strengthen these results by showing hardness of approximation even for the unweighted geometric case. We also prove that the unweighted topological case is NP-hard.
DOI : 10.7155/jgaa.00458
Keywords: graph drawing, maximum crossing number, maximum rectilinear crossing number, maximum convex crossing number, NP-hard, APX-hard
@article{JGAA_2018_22_1_a4,
     author = {Markus Chimani and Stefan Felsner and Stephen Kobourov and Torsten Ueckerdt and Pavel Valtr and Alexander Wolff},
     title = {On the {Maximum} {Crossing} {Number}},
     journal = {Journal of Graph Algorithms and Applications},
     pages = {67--87},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2018},
     doi = {10.7155/jgaa.00458},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00458/}
}
TY  - JOUR
AU  - Markus Chimani
AU  - Stefan Felsner
AU  - Stephen Kobourov
AU  - Torsten Ueckerdt
AU  - Pavel Valtr
AU  - Alexander Wolff
TI  - On the Maximum Crossing Number
JO  - Journal of Graph Algorithms and Applications
PY  - 2018
SP  - 67
EP  - 87
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00458/
DO  - 10.7155/jgaa.00458
LA  - en
ID  - JGAA_2018_22_1_a4
ER  - 
%0 Journal Article
%A Markus Chimani
%A Stefan Felsner
%A Stephen Kobourov
%A Torsten Ueckerdt
%A Pavel Valtr
%A Alexander Wolff
%T On the Maximum Crossing Number
%J Journal of Graph Algorithms and Applications
%D 2018
%P 67-87
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00458/
%R 10.7155/jgaa.00458
%G en
%F JGAA_2018_22_1_a4
Markus Chimani; Stefan Felsner; Stephen Kobourov; Torsten Ueckerdt; Pavel Valtr; Alexander Wolff. On the Maximum Crossing Number. Journal of Graph Algorithms and Applications, 
							Special Issue on Graph Drawing Beyond Planarity
					, Tome 22 (2018) no. 1, pp. 67-87. doi : 10.7155/jgaa.00458. http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00458/

Cité par Sources :