On the size of planarly connected crossing graphs
Journal of Graph Algorithms and Applications, Special Issue on Graph Drawing Beyond Planarity , Tome 22 (2018) no. 1, pp. 11-22.

Voir la notice de l'article provenant de la source Journal of Graph Algorythms and Applications website

We prove that if an $n$-vertex graph $G$ can be drawn in the plane such that each pair of crossing edges is independent and there is a crossing-free edge that connects their endpoints, then $G$ has $O(n)$ edges. Graphs that admit such drawings are related to quasi-planar graphs and to maximal $1$-planar and fan-planar graphs.
@article{JGAA_2018_22_1_a1,
     author = {Eyal Ackerman and Bal\'azs Keszegh and Mate Vizer},
     title = {On the size of planarly connected crossing graphs},
     journal = {Journal of Graph Algorithms and Applications},
     pages = {11--22},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2018},
     doi = {10.7155/jgaa.00453},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00453/}
}
TY  - JOUR
AU  - Eyal Ackerman
AU  - Balázs Keszegh
AU  - Mate Vizer
TI  - On the size of planarly connected crossing graphs
JO  - Journal of Graph Algorithms and Applications
PY  - 2018
SP  - 11
EP  - 22
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00453/
DO  - 10.7155/jgaa.00453
LA  - en
ID  - JGAA_2018_22_1_a1
ER  - 
%0 Journal Article
%A Eyal Ackerman
%A Balázs Keszegh
%A Mate Vizer
%T On the size of planarly connected crossing graphs
%J Journal of Graph Algorithms and Applications
%D 2018
%P 11-22
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00453/
%R 10.7155/jgaa.00453
%G en
%F JGAA_2018_22_1_a1
Eyal Ackerman; Balázs Keszegh; Mate Vizer. On the size of planarly connected crossing graphs. Journal of Graph Algorithms and Applications, 
							Special Issue on Graph Drawing Beyond Planarity
					, Tome 22 (2018) no. 1, pp. 11-22. doi : 10.7155/jgaa.00453. http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00453/

Cité par Sources :