Hamiltonian chromatic number of block graphs
Journal of Graph Algorithms and Applications, Special Issue on Selected Papers from the Tenth International Workshop on Algorithms and Computation (WALCOM 2016) , Tome 21 (2017) no. 3, pp. 353-369.

Voir la notice de l'article provenant de la source Journal of Graph Algorythms and Applications website

Let $G$ be a simple connected graph of order $n$. A hamiltonian coloring $c$ of a graph $G$ is an assignment of colors (non-negative integers) to the vertices of $G$ such that $D(u, v)$ + $|c(u) - c(v)|$ $\geq$ $n - 1$ for every two distinct vertices $u$ and $v$ of $G$, where $D(u, v)$ denotes the detour distance between $u$ and $v$ in $G$ which is the length of the longest path between $u$ and $v$. The value $hc(c)$ of a hamiltonian coloring $c$ is the maximum color assigned to a vertex of $G$. The hamiltonian chromatic number, denoted by $hc(G)$, is $\min\{hc(c)\}$ taken over all hamiltonian coloring $c$ of $G$. In this paper, we give a necessary and sufficient condition to achieve a lower bound for the hamiltonian chromatic number of block graphs given in [Bantva, WALCOM 2016. Theorem 1]. We present an algorithm for optimal hamiltonian coloring of a special class of block graphs, namely $SDB(p/2)$ block graphs. We characterize level-wise regular block graphs and extended star of blocks achieving this lower bound.
DOI : 10.7155/jgaa.00420
Keywords: Hamiltonian coloring, Hamiltonian chromatic number, Block graph
@article{JGAA_2017_21_3_a6,
     author = {Devsi Bantva},
     title = {Hamiltonian chromatic number of block graphs},
     journal = {Journal of Graph Algorithms and Applications},
     pages = {353--369},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2017},
     doi = {10.7155/jgaa.00420},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00420/}
}
TY  - JOUR
AU  - Devsi Bantva
TI  - Hamiltonian chromatic number of block graphs
JO  - Journal of Graph Algorithms and Applications
PY  - 2017
SP  - 353
EP  - 369
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00420/
DO  - 10.7155/jgaa.00420
LA  - en
ID  - JGAA_2017_21_3_a6
ER  - 
%0 Journal Article
%A Devsi Bantva
%T Hamiltonian chromatic number of block graphs
%J Journal of Graph Algorithms and Applications
%D 2017
%P 353-369
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00420/
%R 10.7155/jgaa.00420
%G en
%F JGAA_2017_21_3_a6
Devsi Bantva. Hamiltonian chromatic number of block graphs. Journal of Graph Algorithms and Applications, 
							Special Issue on Selected Papers from the Tenth International Workshop on Algorithms and Computation  (WALCOM 2016)
					, Tome 21 (2017) no. 3, pp. 353-369. doi : 10.7155/jgaa.00420. http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00420/

Cité par Sources :