The Min-Max Edge q-Coloring Problem
Journal of Graph Algorithms and Applications, Tome 19 (2015) no. 1, pp. 507-528.

Voir la notice de l'article provenant de la source Journal of Graph Algorythms and Applications website

In this paper we introduce and study a new problem named min-max edge q-coloring which is motivated by applications in wireless mesh networks. The input of the problem consists of an undirected graph and an integer q. The goal is to color the edges of the graph with as many colors as possible such that: (a) any vertex is incident to at most q different colors, and (b) the maximum size of a color group (i.e. set of edges identically colored) is minimized. We show the following results: Min-max edge q-coloring is NP-hard, for any q ≥ 2. A polynomial time exact algorithm for min-max edge q-coloring on trees. Exact formulas of the optimal solution for cliques and almost tight bounds for bicliques and hypergraphs. A non-trivial lower bound of the optimal solution with respect to the average degree of the graph. An approximation algorithm for planar graphs.
DOI : 10.7155/jgaa.00373
Keywords: graph coloring, NP-hard problem, approximation algorithms, exact algorithms
@article{JGAA_2015_19_1_a23,
     author = {Tommi Larjomaa and Alexandru Popa},
     title = {The {Min-Max} {Edge} {q-Coloring} {Problem}},
     journal = {Journal of Graph Algorithms and Applications},
     pages = {507--528},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2015},
     doi = {10.7155/jgaa.00373},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00373/}
}
TY  - JOUR
AU  - Tommi Larjomaa
AU  - Alexandru Popa
TI  - The Min-Max Edge q-Coloring Problem
JO  - Journal of Graph Algorithms and Applications
PY  - 2015
SP  - 507
EP  - 528
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00373/
DO  - 10.7155/jgaa.00373
LA  - en
ID  - JGAA_2015_19_1_a23
ER  - 
%0 Journal Article
%A Tommi Larjomaa
%A Alexandru Popa
%T The Min-Max Edge q-Coloring Problem
%J Journal of Graph Algorithms and Applications
%D 2015
%P 507-528
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00373/
%R 10.7155/jgaa.00373
%G en
%F JGAA_2015_19_1_a23
Tommi Larjomaa; Alexandru Popa. The Min-Max Edge q-Coloring Problem. Journal of Graph Algorithms and Applications, Tome 19 (2015) no. 1, pp. 507-528. doi : 10.7155/jgaa.00373. http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00373/

Cité par Sources :