Metric Dimension Parameterized by Max Leaf Number
Journal of Graph Algorithms and Applications, Tome 19 (2015) no. 1, pp. 313-323.

Voir la notice de l'article provenant de la source Journal of Graph Algorythms and Applications website

The metric dimension of a graph is the size of the smallest set of vertices whose distances distinguish all pairs of vertices in the graph. We show that this graph invariant may be calculated by an algorithm whose running time is linear in the input graph size, added to a function of the largest possible number of leaves in a spanning tree of the graph.
@article{JGAA_2015_19_1_a14,
     author = {David Eppstein},
     title = {Metric {Dimension} {Parameterized} by {Max} {Leaf} {Number}},
     journal = {Journal of Graph Algorithms and Applications},
     pages = {313--323},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2015},
     doi = {10.7155/jgaa.00360},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00360/}
}
TY  - JOUR
AU  - David Eppstein
TI  - Metric Dimension Parameterized by Max Leaf Number
JO  - Journal of Graph Algorithms and Applications
PY  - 2015
SP  - 313
EP  - 323
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00360/
DO  - 10.7155/jgaa.00360
LA  - en
ID  - JGAA_2015_19_1_a14
ER  - 
%0 Journal Article
%A David Eppstein
%T Metric Dimension Parameterized by Max Leaf Number
%J Journal of Graph Algorithms and Applications
%D 2015
%P 313-323
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00360/
%R 10.7155/jgaa.00360
%G en
%F JGAA_2015_19_1_a14
David Eppstein. Metric Dimension Parameterized by Max Leaf Number. Journal of Graph Algorithms and Applications, Tome 19 (2015) no. 1, pp. 313-323. doi : 10.7155/jgaa.00360. http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00360/

Cité par Sources :