The Star and Biclique Coloring and Choosability Problems
Journal of Graph Algorithms and Applications, Tome 18 (2014) no. 3, pp. 347-383.

Voir la notice de l'article provenant de la source Journal of Graph Algorythms and Applications website

A biclique of a graph $G$ is an induced complete bipartite graph. A star of $G$ is a biclique contained in the closed neighborhood of a vertex. A star (biclique) $k$-coloring of $G$ is a $k$-coloring of $G$ that contains no monochromatic maximal stars (bicliques). Similarly, for a list assignment $L$ of $G$, a star (biclique) $L$-coloring is an $L$-coloring of $G$ in which no maximal star (biclique) is monochromatic. If $G$ admits a star (biclique) $L$-coloring for every $k$-list assignment $L$, then $G$ is said to be star (biclique) $k$-choosable. In this article we study the computational complexity of the star and biclique coloring and choosability problems. Specifically, we prove that the star (biclique) $k$-coloring and $k$-choosability problems are $\Sigma_2^p$-complete and $\Pi_3^p$-complete for $k > 2$, respectively, even when the input graph contains no induced $C_4$ or $K_{k+2}$. Then, we study all these problems in some related classes of graphs, including $H$-free graphs for every $H$ on three vertices, graphs with restricted diamonds, split graphs, and threshold graphs.
DOI : 10.7155/jgaa.00326
Keywords: star coloring, biclique coloring, star choosability, biclique choosability
@article{JGAA_2014_18_3_a2,
     author = {Marina Groshaus and Francisco Soulignac and Pablo Terlisky},
     title = {The {Star} and {Biclique} {Coloring} and {Choosability} {Problems}},
     journal = {Journal of Graph Algorithms and Applications},
     pages = {347--383},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2014},
     doi = {10.7155/jgaa.00326},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00326/}
}
TY  - JOUR
AU  - Marina Groshaus
AU  - Francisco Soulignac
AU  - Pablo Terlisky
TI  - The Star and Biclique Coloring and Choosability Problems
JO  - Journal of Graph Algorithms and Applications
PY  - 2014
SP  - 347
EP  - 383
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00326/
DO  - 10.7155/jgaa.00326
LA  - en
ID  - JGAA_2014_18_3_a2
ER  - 
%0 Journal Article
%A Marina Groshaus
%A Francisco Soulignac
%A Pablo Terlisky
%T The Star and Biclique Coloring and Choosability Problems
%J Journal of Graph Algorithms and Applications
%D 2014
%P 347-383
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00326/
%R 10.7155/jgaa.00326
%G en
%F JGAA_2014_18_3_a2
Marina Groshaus; Francisco Soulignac; Pablo Terlisky. The Star and Biclique Coloring and Choosability Problems. Journal of Graph Algorithms and Applications, Tome 18 (2014) no. 3, pp. 347-383. doi : 10.7155/jgaa.00326. http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00326/

Cité par Sources :