Lower bounds for Ramsey numbers for complete bipartite and 3-uniform tripartite subgraphs
Journal of Graph Algorithms and Applications, Special Issue on Selected Papers from the Seventh International Workshop on Algorithms and Computation, WALCOM 2013 , Tome 17 (2013) no. 6, pp. 671-688.

Voir la notice de l'article provenant de la source Journal of Graph Algorythms and Applications website

Let R(Ka,b,Kc,d) be the minimum number n so that any n-vertex simple undirected graph G contains a Ka,b or its complement G′ contains a Kc,d. We demonstrate constructions showing that R(K2,b,K2,d) > b+d+1 for d ≥ b ≥ 2. We establish lower bounds for R(Ka,b,Ka,b) and R(Ka,b,Kc,d) using probabilistic methods. We define R′(a,b,c) to be the minimum number n such that any n-vertex 3-uniform hypergraph G(V,E), or its complement G′(V,Ec) contains a Ka,b,c. Here, Ka,b,c is defined as the complete tripartite 3-uniform hypergraph with vertex set A∪B∪C, where the A, B and C have a, b and c vertices respectively, and Ka,b,c has abc 3-uniform hyperedges {u,v,w}, u ∈ A, v ∈ B and w ∈ C. We derive lower bounds for R′(a,b,c) using probabilistic methods. We show that R′(1,1,b) ≤ 2b+1. We have also generated examples to show that R′(1,1,3) ≥ 6 and R′(1,1,4) ≥ 7. Keywords: Ramsey number, bipartite graph, local lemma, probabilistic method, r-uniform hypergraph.
DOI : 10.7155/jgaa.00311
Keywords: Ramsey number, bipartite graph, local lemma, probabilistic method, r-uniform hypergraph
@article{JGAA_2013_17_6_a5,
     author = {Tapas Kumar Mishra and Sudebkumar Prasant Pal},
     title = {Lower bounds for {Ramsey} numbers for complete bipartite and 3-uniform tripartite subgraphs},
     journal = {Journal of Graph Algorithms and Applications},
     pages = {671--688},
     publisher = {mathdoc},
     volume = {17},
     number = {6},
     year = {2013},
     doi = {10.7155/jgaa.00311},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00311/}
}
TY  - JOUR
AU  - Tapas Kumar Mishra
AU  - Sudebkumar Prasant Pal
TI  - Lower bounds for Ramsey numbers for complete bipartite and 3-uniform tripartite subgraphs
JO  - Journal of Graph Algorithms and Applications
PY  - 2013
SP  - 671
EP  - 688
VL  - 17
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00311/
DO  - 10.7155/jgaa.00311
LA  - en
ID  - JGAA_2013_17_6_a5
ER  - 
%0 Journal Article
%A Tapas Kumar Mishra
%A Sudebkumar Prasant Pal
%T Lower bounds for Ramsey numbers for complete bipartite and 3-uniform tripartite subgraphs
%J Journal of Graph Algorithms and Applications
%D 2013
%P 671-688
%V 17
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00311/
%R 10.7155/jgaa.00311
%G en
%F JGAA_2013_17_6_a5
Tapas Kumar Mishra; Sudebkumar Prasant Pal. Lower bounds for Ramsey numbers for complete bipartite and 3-uniform tripartite subgraphs. Journal of Graph Algorithms and Applications, 
							Special Issue on Selected Papers from the Seventh International Workshop on Algorithms and Computation, WALCOM 2013
					, Tome 17 (2013) no. 6, pp. 671-688. doi : 10.7155/jgaa.00311. http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00311/

Cité par Sources :