Optimal 3D Angular Resolution for Low-Degree Graphs
Journal of Graph Algorithms and Applications, Tome 17 (2013) no. 3, pp. 173-200.

Voir la notice de l'article provenant de la source Journal of Graph Algorythms and Applications website

We show that every graph of maximum degree three can be drawn without crossings in three dimensions with at most two bends per edge, and with 120° angles between all pairs of edge segments that meet at a vertex or a bend. We show that every graph of maximum degree four can be drawn in three dimensions with at most three bends per edge, and with 109.5° angles, i. e., the angular resolution of the diamond lattice, between all pairs of edge segments that meet at a vertex or a bend. The angles in these drawings are the best possible given the degrees of the vertices.
DOI : 10.7155/jgaa.00290
Keywords: 3D graph drawing, optimal angular resolution, grid drawing, bounded degree graphs, bounded bends per edge
@article{JGAA_2013_17_3_a1,
     author = {David Eppstein and Maarten L\"offler and Elena Mumford and Martin N\"ollenburg},
     title = {Optimal {3D} {Angular} {Resolution} for {Low-Degree} {Graphs}},
     journal = {Journal of Graph Algorithms and Applications},
     pages = {173--200},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2013},
     doi = {10.7155/jgaa.00290},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00290/}
}
TY  - JOUR
AU  - David Eppstein
AU  - Maarten Löffler
AU  - Elena Mumford
AU  - Martin Nöllenburg
TI  - Optimal 3D Angular Resolution for Low-Degree Graphs
JO  - Journal of Graph Algorithms and Applications
PY  - 2013
SP  - 173
EP  - 200
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00290/
DO  - 10.7155/jgaa.00290
LA  - en
ID  - JGAA_2013_17_3_a1
ER  - 
%0 Journal Article
%A David Eppstein
%A Maarten Löffler
%A Elena Mumford
%A Martin Nöllenburg
%T Optimal 3D Angular Resolution for Low-Degree Graphs
%J Journal of Graph Algorithms and Applications
%D 2013
%P 173-200
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00290/
%R 10.7155/jgaa.00290
%G en
%F JGAA_2013_17_3_a1
David Eppstein; Maarten Löffler; Elena Mumford; Martin Nöllenburg. Optimal 3D Angular Resolution for Low-Degree Graphs. Journal of Graph Algorithms and Applications, Tome 17 (2013) no. 3, pp. 173-200. doi : 10.7155/jgaa.00290. http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00290/

Cité par Sources :