Optimal Angular Resolution for Face-Symmetric Drawings
Journal of Graph Algorithms and Applications, Tome 15 (2011) no. 4, pp. 551-564.

Voir la notice de l'article provenant de la source Journal of Graph Algorythms and Applications website

Let G be a graph that may be drawn in the plane in such a way that all internal faces are centrally symmetric convex polygons. We show how to find a drawing of this type that maximizes the angular resolution of the drawing, the minimum angle between any two incident edges, in polynomial time, by reducing the problem to one of finding parametric shortest paths in an auxiliary graph. The running time is at most O(t3), where t is a parameter of the input graph that is at most O(n).
DOI : 10.7155/jgaa.00238
Keywords: graph drawing, angular resolution, face-symmetric drawings, partial cubes, parametric shortest paths
@article{JGAA_2011_15_4_a3,
     author = {David Eppstein and Kevin Wortman},
     title = {Optimal {Angular} {Resolution} for {Face-Symmetric} {Drawings}},
     journal = {Journal of Graph Algorithms and Applications},
     pages = {551--564},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2011},
     doi = {10.7155/jgaa.00238},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00238/}
}
TY  - JOUR
AU  - David Eppstein
AU  - Kevin Wortman
TI  - Optimal Angular Resolution for Face-Symmetric Drawings
JO  - Journal of Graph Algorithms and Applications
PY  - 2011
SP  - 551
EP  - 564
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00238/
DO  - 10.7155/jgaa.00238
LA  - en
ID  - JGAA_2011_15_4_a3
ER  - 
%0 Journal Article
%A David Eppstein
%A Kevin Wortman
%T Optimal Angular Resolution for Face-Symmetric Drawings
%J Journal of Graph Algorithms and Applications
%D 2011
%P 551-564
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00238/
%R 10.7155/jgaa.00238
%G en
%F JGAA_2011_15_4_a3
David Eppstein; Kevin Wortman. Optimal Angular Resolution for Face-Symmetric Drawings. Journal of Graph Algorithms and Applications, Tome 15 (2011) no. 4, pp. 551-564. doi : 10.7155/jgaa.00238. http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00238/

Cité par Sources :