Three-Dimensional 1-Bend Graph Drawings
Journal of Graph Algorithms and Applications, Tome 8 (2004) no. 3, pp. 357-366.

Voir la notice de l'article provenant de la source Journal of Graph Algorythms and Applications website

We consider three-dimensional grid-drawings of graphs with at most one bend per edge. Under the additional requirement that the vertices be collinear, we prove that the minimum volume of such a drawing is Θ(cn), where n is the number of vertices and c is the cutwidth of the graph. We then prove that every graph has a three-dimensional grid-drawing with O(n3/log2 n) volume and one bend per edge. The best previous bound was O(n3).
@article{JGAA_2004_8_3_a4,
     author = {Pat Morin and David Wood},
     title = {Three-Dimensional {1-Bend} {Graph} {Drawings}},
     journal = {Journal of Graph Algorithms and Applications},
     pages = {357--366},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2004},
     doi = {10.7155/jgaa.00095},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00095/}
}
TY  - JOUR
AU  - Pat Morin
AU  - David Wood
TI  - Three-Dimensional 1-Bend Graph Drawings
JO  - Journal of Graph Algorithms and Applications
PY  - 2004
SP  - 357
EP  - 366
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00095/
DO  - 10.7155/jgaa.00095
LA  - en
ID  - JGAA_2004_8_3_a4
ER  - 
%0 Journal Article
%A Pat Morin
%A David Wood
%T Three-Dimensional 1-Bend Graph Drawings
%J Journal of Graph Algorithms and Applications
%D 2004
%P 357-366
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00095/
%R 10.7155/jgaa.00095
%G en
%F JGAA_2004_8_3_a4
Pat Morin; David Wood. Three-Dimensional 1-Bend Graph Drawings. Journal of Graph Algorithms and Applications, Tome 8 (2004) no. 3, pp. 357-366. doi : 10.7155/jgaa.00095. http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00095/

Cité par Sources :