Keywords: heaps; semiheaps; principal bundles; group actions; generalised associativity
@article{10_5817_AM2024_2_101,
author = {Bruce, Andrew James},
title = {On {Lie} semiheaps and ternary principal bundles},
journal = {Archivum mathematicum},
pages = {101--124},
year = {2024},
volume = {60},
number = {2},
doi = {10.5817/AM2024-2-101},
mrnumber = {4729651},
zbl = {07830507},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2024-2-101/}
}
Bruce, Andrew James. On Lie semiheaps and ternary principal bundles. Archivum mathematicum, Tome 60 (2024) no. 2, pp. 101-124. doi: 10.5817/AM2024-2-101
[1] Baer, R.: Zur Einführung des Scharbegriffs. J. Reine Angew. Math. 160 (1929), 199–207. | MR
[2] Borowiec, A., Dudek, W.A., Duplij, S.: Basic concepts of ternary Hopf algebras. J. Kharkov National Univ., ser. Nuclei, Particles and Fields, vol. 529 3 (15) (2001), 21–29.
[3] Breaz, S., Brzeziński, T., Rybołowicz, B., Saracco, P.: Heaps of modules and affine spaces. Ann. Mat. Pur. Appl. 203 (2024), 403–405. | DOI | MR
[4] Bruce, A.J.: Semiheaps and Ternary Algebras in Quantum Mechanics Revisited. Universe 8 (1) (2022), 56. | DOI
[5] Brzeziński, T.: Towards semi-trusses. Rev. Roumaine Math. Pures Appl. 63 (2) (2018), 75–89. | MR
[6] Brzeziński, T.: Trusses: between braces and rings. Trans. Amer. Math. Soc. 372 (6) (2019), 4149–4176. | DOI | MR
[7] Brzeziński, T.: Trusses: paragons, ideals and modules. J. Pure Appl. Algebra 224 (6) (2020), 39 pp., 106258. | DOI | MR
[8] Brzeziński, T.: Lie trusses and heaps of Lie affebras. PoS 406 (2022), 12 pp., 307.
[9] Brzeziński, T.: The algebra of elliptic curves. Proc. Edinb. Math. Soc. 66 (2) (2023), 548–556. | DOI | MR
[10] Brzeziński, T., Rybołowicz, B.: Modules over trusses vs modules over rings: direct sums and free modules. Algebr. Represent. Theory 25 (1) (2022), 1–23. | DOI | MR
[11] Brzeziński, T., Wisbauer, R.: Corings and comodules. London Math. Soc. Lecture Note Ser., vol. 309, Cambridge University Press, Cambridge, 2003, pp. xii+476 pp. | MR
[12] Grabowska, K., Grabowski, J., Urbański, P.: Lie brackets on affine bundles. Ann. Global Anal.Geom. 24 (2003), 101–130. | DOI | MR
[13] Grabowski, J.: An introduction to loopoids. Comment. Math. Univ. Carolin. 57 (2016), 515–526. | MR
[14] Grabowski, J., Z., Ravanpak: Nonassociative analogs of Lie groupoids. Differential Geom. Appl. 82 (2022), 32 pp., Paper No. 101887. | DOI | MR
[15] Hollings, C.D., Lawson, M.V.: Wagner’s theory of generalised heaps. Springer, Cham, 2017, xv+189 pp., ISBN: 978-3-319-63620-7. | MR
[16] Kerner, R.: Ternary and non-associative structures. Int. J. Geom. Methods Mod. Phys. 5 (2008), 1265–1294. | DOI | MR
[17] Kerner, R.: Ternary generalizations of graded algebras with some physical applications. Rev. Roumaine Math. Pures Appl 63 (2018), 107–141. | MR
[18] Kolář, I., Michor, P.W., Slovák, J.: Natural operations in differential geometry. Springer-Verlag, Berlin, 1993. | MR | Zbl
[19] Konstantinova, L.I.: Semiheap bundles. Saratov Gos. Univ. Saratov No. 4 (1978), 46–54. | MR
[20] Kontsevich, M.: Operads and motives in deformation quantization. Lett. Math. Phys. 48 (1999), 35–72. | DOI | MR
[21] Kosmann-Schwarzbach, Y.: Multiplicativity, from Lie groups to generalized geometry. Banach Center Publ. 110 (2016), 131–166. | MR
[22] Mac Lane, S.: Categories for the working mathematician. Grad. Texts in Math., vol. 5, New York, NY: Springer, 2nd ed., 1998, pp. xii+314 pp. | MR
[23] Nakahara, M.: Geometry, topology and physics. 2nd ed., Graduate Stud. Ser. Phys. Bristol: Institute of Physics (IOP), 2003, xxii+ 573 pp. | MR
[24] Prüfer, H.: Theorie der Abelschen Gruppen. Math. Z. 20 (1) (1924), 165–171. | MR
[25] Saito, M., E., Zappala: Braided Frobenius algebras from certain Hopf algebras. J. Algebra Appl. 22 (1) (2023), 23 pp., Paper No. 2350012. | MR
[26] Škoda, Z.: Quantum heaps, cops and heapy categories. Math. Commun. 12 (1) (2007), 1–9. | MR
[27] Trèves, F.: Topological Vector Spaces, Distributions and Kernels. Dover Publications, Inc., Mineola, NY, 2006, xvi+565 pp., ISBN: 0-486-45352-9. | MR
Cité par Sources :