Keywords: algebraic differential geometry; infinite dimensional manifold; smooth function; vector field; differential form
@article{10_5817_AM2024_1_1,
author = {Sadr, Maysam Maysami and Amnieh, Danial Bouzarjomehri},
title = {On the differential geometry of some classes of infinite dimensional manifolds},
journal = {Archivum mathematicum},
pages = {1--20},
year = {2024},
volume = {60},
number = {1},
doi = {10.5817/AM2024-1-1},
mrnumber = {4709718},
zbl = {07830503},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2024-1-1/}
}
TY - JOUR AU - Sadr, Maysam Maysami AU - Amnieh, Danial Bouzarjomehri TI - On the differential geometry of some classes of infinite dimensional manifolds JO - Archivum mathematicum PY - 2024 SP - 1 EP - 20 VL - 60 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2024-1-1/ DO - 10.5817/AM2024-1-1 LA - en ID - 10_5817_AM2024_1_1 ER -
%0 Journal Article %A Sadr, Maysam Maysami %A Amnieh, Danial Bouzarjomehri %T On the differential geometry of some classes of infinite dimensional manifolds %J Archivum mathematicum %D 2024 %P 1-20 %V 60 %N 1 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2024-1-1/ %R 10.5817/AM2024-1-1 %G en %F 10_5817_AM2024_1_1
Sadr, Maysam Maysami; Amnieh, Danial Bouzarjomehri. On the differential geometry of some classes of infinite dimensional manifolds. Archivum mathematicum, Tome 60 (2024) no. 1, pp. 1-20. doi: 10.5817/AM2024-1-1
[1] Albeverio, S., Daletskii, A.: $L^2$-Betti numbers of infinite configuration spaces. Publ. Res. Inst. Math. Sci. 42 (2006), 649–682. | DOI | MR
[2] Albeverio, S., Daletskii, A., Lytvynov, E.: Laplace operators on differential forms over configuration spaces. J. Geom. Phys. 37 (2001), 15–46. | DOI | MR
[3] Albeverio, S., Kondratiev, Yu.G., Röckner, M.: Differential geometry of Poisson spaces. C.R. Acad. Sci. Paris 323 (1996), 1129–1134. | MR
[4] Albeverio, S., Kondratiev, Yu.G., Röckner, M.: Analysis and geometry on configuration spaces. J. Funct. Anal. 154 (1998), 444–500. | DOI | MR
[5] Albeverio, S., Kondratiev, Yu.G., Röckner, M.: Analysis and geometry on configuration spaces: The Gibbsian case. J. Funct. Anal. 157 (1998), 242–291. | DOI | MR
[6] Dubois-Violette, M.: Lectures on graded differential algebras and noncommutative geometry. Noncommutative differential geometry and its applications to physics, Springer, Dordrecht, 2001, arXiv:math/9912017 [math.QA], pp. 245–306. | MR
[7] Finkelshtein, D., Kondratiev, Y., Lytvynov, E., Oliveira, M.J.: An infinite dimensional umbral calculus. J. Funct. Anal. 276 (2019), 3714–3766. | DOI | MR
[8] Finkelshtein, D., Kondratiev, Y., Lytvynov, E., Oliveira, M.J.: Stirling operators in spatial combinatorics. J. Funct. Anal. 282 (2022), 45 pp. | DOI | MR
[9] Fukushima, M.: Dirichlet forms and Markov processes. Amsterdam, North-Holland Pub. Company, 1980. | MR
[10] Gracia-Bondia, J.M., Várilly, J.C., Figuerora, H.: Elements of noncommutative geometry. Springer Science & Business Media, New York, 2021. | MR
[11] Kondratiev, Y., Lytvynov, E., Vershik, A.: Laplace operators on the cone of radon measures. J. Funct. Anal. 269 (2015), 2947–2976. | DOI | MR
[12] Kuchling, P.: Analysis and dynamics on the cone of discrete radon measures. Ph.D. thesis, Bielefeld University, 2019.
[13] Lang, S.: Introduction to differentiable manifolds. Springer Science & Business Media, New York, 2006. | MR
[14] Lee, J.: Introduction to smooth manifolds. Springer, New York, 2013. | MR
[15] Ma, Z.-M., Röckner, M.: Construction of diffusions on configuration spaces. Osaka J. Math. 37 (2000), 273–314. | MR
[16] Michor, P.W.: Gauge theory for fiber bundles. Monographs and Textbooks in Physical Science, Lecture Notes, Bibliopolis, Naples, 1991. | MR
[17] Privault, N.: Connections and curvature in the Riemannian geometry of configuration spaces. J. Funct. Anal. 185 (2001), 376–403. | DOI | MR
[18] Röckner, M.: Stochastic analysis on configuration spaces: Basic ideas and recent results. New Directions in Dirichlet Forms, Studies in Advanced Mathematics, Providence, RI: American Mathematical Society, 1998, arXiv:math/9803162 [math.PR], pp. 157–231. | MR
Cité par Sources :