On the diophantine equation $x^2+2^a3^b73^c=y^n $
Archivum mathematicum, Tome 59 (2023) no. 5, pp. 411-420
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper, we find all integer solutions $ (x, y, n, a, b, c) $ of the equation in the title for non-negative integers $ a, b$ and $ c $ under the condition that the integers $ x $ and $ y $ are relatively prime and $ n \ge 3$. The proof depends on the famous primitive divisor theorem due to Bilu, Hanrot and Voutier and the computational techniques on some elliptic curves.
DOI :
10.5817/AM2023-5-411
Classification :
11D59, 11D61, 11Y50
Keywords: diophantine equations; primitive divisor theorem; Ramanujan-Nagell equations
Keywords: diophantine equations; primitive divisor theorem; Ramanujan-Nagell equations
@article{10_5817_AM2023_5_411,
author = {Alan, Murat and Aydin, Mustafa},
title = {On the diophantine equation $x^2+2^a3^b73^c=y^n $},
journal = {Archivum mathematicum},
pages = {411--420},
publisher = {mathdoc},
volume = {59},
number = {5},
year = {2023},
doi = {10.5817/AM2023-5-411},
mrnumber = {4641955},
zbl = {07790556},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-5-411/}
}
TY - JOUR AU - Alan, Murat AU - Aydin, Mustafa TI - On the diophantine equation $x^2+2^a3^b73^c=y^n $ JO - Archivum mathematicum PY - 2023 SP - 411 EP - 420 VL - 59 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-5-411/ DO - 10.5817/AM2023-5-411 LA - en ID - 10_5817_AM2023_5_411 ER -
Alan, Murat; Aydin, Mustafa. On the diophantine equation $x^2+2^a3^b73^c=y^n $. Archivum mathematicum, Tome 59 (2023) no. 5, pp. 411-420. doi: 10.5817/AM2023-5-411
Cité par Sources :