On the diophantine equation $x^2+2^a3^b73^c=y^n $
Archivum mathematicum, Tome 59 (2023) no. 5, pp. 411-420
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we find all integer solutions $ (x, y, n, a, b, c) $ of the equation in the title for non-negative integers $ a, b$ and $ c $ under the condition that the integers $ x $ and $ y $ are relatively prime and $ n \ge 3$. The proof depends on the famous primitive divisor theorem due to Bilu, Hanrot and Voutier and the computational techniques on some elliptic curves.
In this paper, we find all integer solutions $ (x, y, n, a, b, c) $ of the equation in the title for non-negative integers $ a, b$ and $ c $ under the condition that the integers $ x $ and $ y $ are relatively prime and $ n \ge 3$. The proof depends on the famous primitive divisor theorem due to Bilu, Hanrot and Voutier and the computational techniques on some elliptic curves.
DOI : 10.5817/AM2023-5-411
Classification : 11D59, 11D61, 11Y50
Keywords: diophantine equations; primitive divisor theorem; Ramanujan-Nagell equations
@article{10_5817_AM2023_5_411,
     author = {Alan, Murat and Aydin, Mustafa},
     title = {On the diophantine equation $x^2+2^a3^b73^c=y^n $},
     journal = {Archivum mathematicum},
     pages = {411--420},
     year = {2023},
     volume = {59},
     number = {5},
     doi = {10.5817/AM2023-5-411},
     mrnumber = {4641955},
     zbl = {07790556},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-5-411/}
}
TY  - JOUR
AU  - Alan, Murat
AU  - Aydin, Mustafa
TI  - On the diophantine equation $x^2+2^a3^b73^c=y^n $
JO  - Archivum mathematicum
PY  - 2023
SP  - 411
EP  - 420
VL  - 59
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-5-411/
DO  - 10.5817/AM2023-5-411
LA  - en
ID  - 10_5817_AM2023_5_411
ER  - 
%0 Journal Article
%A Alan, Murat
%A Aydin, Mustafa
%T On the diophantine equation $x^2+2^a3^b73^c=y^n $
%J Archivum mathematicum
%D 2023
%P 411-420
%V 59
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-5-411/
%R 10.5817/AM2023-5-411
%G en
%F 10_5817_AM2023_5_411
Alan, Murat; Aydin, Mustafa. On the diophantine equation $x^2+2^a3^b73^c=y^n $. Archivum mathematicum, Tome 59 (2023) no. 5, pp. 411-420. doi: 10.5817/AM2023-5-411

[1] Alan, M., Zengin, U.: On the Diophantine equation $x^2+3^a41^b=y^n$. Period. Math. Hung. 81 (2020), 284–291. | DOI | MR

[2] Bérczes, A., Pink, I.: On the Diophantine equation $x^2+p^{2k}=y^n$. Arch. Math. (Basel) 91 (2008), 505–517. | MR | Zbl

[3] Bérczes, A., Pink, I.: On generalized Lebesgue-Ramanujan-Nagell equations. An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 22 (2014), 51–57. | MR

[4] Bilu, Y., Hanrot, G., Voutier, P.M.: Existence of primitive divisors of Lucas and Lehmer numbers (with Appendix by Mignotte). J. Reine Angew. Math. 539 (2001), 75–122. | MR

[5] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24 (1997), 235–265. | DOI | MR | Zbl

[6] Cangúl, I.N., Demirci, M., Inam, M., Luca, F., Soydan, G.: On the Diophantine equation $x^2+2^{a}3^{b}11^{c}=y^n$. Math. Slovaca 63 (2013), 647–659. | MR

[7] Cangúl, I.N., Demirci, M., Luca, F., Pintér, A., Soydan, G.: On the Diophantine equation $x^2+2^a11^b=y^n$. Fibonacci Q. 48 (2010), 39–46. | MR

[8] Carmichael, R.D.: On the numerical factors of the arithmetic forms $ \alpha ^n -\beta ^n $. Ann. Math. 2 (1913), 30–70. | MR

[9] Chakraborty, K., Hoque, A., Sharma, R.: On the solutions of certain Lebesgue-Ramanujan-Nagell equations. Rocky Mountain J. Math. 51 (2021), 459–471. | DOI | MR

[10] Ghadermarzi, A.: On the Diophantine equations $ x^2+2^\alpha 3^\beta 19^\gamma =y^n $ and $ x^2+2^\alpha 3^\beta 13^\gamma =y^n $. Math. Slovaca 69 (2019), 507–520. | MR

[11] Godinho, H., Marques, D., Togbé, A.: On the Diophantine equation $x^2+C=y^n$ for $C = 2^{a}3^{b}17^{c}$ and $C = 2^{a}13^{b}17^{c}$. Math. Slovaca 66 (2016), 565–574. | MR

[12] Le, M.H., Soydan, G.: A brief survey on the generalized Lebesgue-Ramanujan-Nagell equation. Surv. Math. Appl. 15 (2020), 473–523. | MR

[13] Luca, F.: On the equation $x^2+2^{a}3^{b}=y^n$. Int. J. Math. Math. Sci. 29 (2002), 239–244. | MR

[14] Luca, F., Togbé, A.: On the equation $x^2+2^{a}5^{b}=y^n$. Int. J. Number Theory 4 (2008), 973–979. | MR

[15] Luca, F., Togbé, A.: On the equation $x^2+2^{\alpha }13^{\beta }=y^n$. Colloq. Math. 116 (2009), 139–146. | MR

[16] Pan, X.: The exponential Lebesgue-Nagell equation $x^2+p^{2m}=y^n $. Period. Math. Hung. 67 (2013), 231–242. | DOI | MR

[17] Pink, I.: On the Diophantine equation $x^2+2^{a}3^{b}5^{c}7^{d}=y^n $. Publ. Math. Debrecen 70 (2007), 149–166. | DOI | MR

[18] Pink, I., Rabai, Z.: On The Diophantine equation $x^2+5^{k}17^{l}=y^n$. Commun. Math. 19 (2011), 1–9. | MR

[19] Soydan, G., Tzanakis, N.: Complete solution of the Diophantine equation $x^2+5^{a}11^{b}=y^n$. Bull. Hellenic Math. Soc. 60 (2016), 125–152. | MR

[20] Soydan, G., Ulas, M., Zhu, H.: On the Diophantine equation $x^2+2^{a}19^{b}=y^n$. Indian J. Pure Appl. Math. 43 (2012), 251–261. | MR

[21] Tho, N.X.: Solutions to A Lebesgue-Nagell equation. Bull. Aust. Math. Soc. 105 (2022), 19–30. | MR

[22] Zhu, H., Le, M., Soydan, G., Togbé, A.: On the exponential Diophantine equation $x^2+2^{a}p^{b}=y^n$. Period. Math. Hung. 70 (2015), 233–247. | DOI | MR

Cité par Sources :