Keywords: diophantine equations; primitive divisor theorem; Ramanujan-Nagell equations
@article{10_5817_AM2023_5_411,
author = {Alan, Murat and Aydin, Mustafa},
title = {On the diophantine equation $x^2+2^a3^b73^c=y^n $},
journal = {Archivum mathematicum},
pages = {411--420},
year = {2023},
volume = {59},
number = {5},
doi = {10.5817/AM2023-5-411},
mrnumber = {4641955},
zbl = {07790556},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-5-411/}
}
Alan, Murat; Aydin, Mustafa. On the diophantine equation $x^2+2^a3^b73^c=y^n $. Archivum mathematicum, Tome 59 (2023) no. 5, pp. 411-420. doi: 10.5817/AM2023-5-411
[1] Alan, M., Zengin, U.: On the Diophantine equation $x^2+3^a41^b=y^n$. Period. Math. Hung. 81 (2020), 284–291. | DOI | MR
[2] Bérczes, A., Pink, I.: On the Diophantine equation $x^2+p^{2k}=y^n$. Arch. Math. (Basel) 91 (2008), 505–517. | MR | Zbl
[3] Bérczes, A., Pink, I.: On generalized Lebesgue-Ramanujan-Nagell equations. An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 22 (2014), 51–57. | MR
[4] Bilu, Y., Hanrot, G., Voutier, P.M.: Existence of primitive divisors of Lucas and Lehmer numbers (with Appendix by Mignotte). J. Reine Angew. Math. 539 (2001), 75–122. | MR
[5] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24 (1997), 235–265. | DOI | MR | Zbl
[6] Cangúl, I.N., Demirci, M., Inam, M., Luca, F., Soydan, G.: On the Diophantine equation $x^2+2^{a}3^{b}11^{c}=y^n$. Math. Slovaca 63 (2013), 647–659. | MR
[7] Cangúl, I.N., Demirci, M., Luca, F., Pintér, A., Soydan, G.: On the Diophantine equation $x^2+2^a11^b=y^n$. Fibonacci Q. 48 (2010), 39–46. | MR
[8] Carmichael, R.D.: On the numerical factors of the arithmetic forms $ \alpha ^n -\beta ^n $. Ann. Math. 2 (1913), 30–70. | MR
[9] Chakraborty, K., Hoque, A., Sharma, R.: On the solutions of certain Lebesgue-Ramanujan-Nagell equations. Rocky Mountain J. Math. 51 (2021), 459–471. | DOI | MR
[10] Ghadermarzi, A.: On the Diophantine equations $ x^2+2^\alpha 3^\beta 19^\gamma =y^n $ and $ x^2+2^\alpha 3^\beta 13^\gamma =y^n $. Math. Slovaca 69 (2019), 507–520. | MR
[11] Godinho, H., Marques, D., Togbé, A.: On the Diophantine equation $x^2+C=y^n$ for $C = 2^{a}3^{b}17^{c}$ and $C = 2^{a}13^{b}17^{c}$. Math. Slovaca 66 (2016), 565–574. | MR
[12] Le, M.H., Soydan, G.: A brief survey on the generalized Lebesgue-Ramanujan-Nagell equation. Surv. Math. Appl. 15 (2020), 473–523. | MR
[13] Luca, F.: On the equation $x^2+2^{a}3^{b}=y^n$. Int. J. Math. Math. Sci. 29 (2002), 239–244. | MR
[14] Luca, F., Togbé, A.: On the equation $x^2+2^{a}5^{b}=y^n$. Int. J. Number Theory 4 (2008), 973–979. | MR
[15] Luca, F., Togbé, A.: On the equation $x^2+2^{\alpha }13^{\beta }=y^n$. Colloq. Math. 116 (2009), 139–146. | MR
[16] Pan, X.: The exponential Lebesgue-Nagell equation $x^2+p^{2m}=y^n $. Period. Math. Hung. 67 (2013), 231–242. | DOI | MR
[17] Pink, I.: On the Diophantine equation $x^2+2^{a}3^{b}5^{c}7^{d}=y^n $. Publ. Math. Debrecen 70 (2007), 149–166. | DOI | MR
[18] Pink, I., Rabai, Z.: On The Diophantine equation $x^2+5^{k}17^{l}=y^n$. Commun. Math. 19 (2011), 1–9. | MR
[19] Soydan, G., Tzanakis, N.: Complete solution of the Diophantine equation $x^2+5^{a}11^{b}=y^n$. Bull. Hellenic Math. Soc. 60 (2016), 125–152. | MR
[20] Soydan, G., Ulas, M., Zhu, H.: On the Diophantine equation $x^2+2^{a}19^{b}=y^n$. Indian J. Pure Appl. Math. 43 (2012), 251–261. | MR
[21] Tho, N.X.: Solutions to A Lebesgue-Nagell equation. Bull. Aust. Math. Soc. 105 (2022), 19–30. | MR
[22] Zhu, H., Le, M., Soydan, G., Togbé, A.: On the exponential Diophantine equation $x^2+2^{a}p^{b}=y^n$. Period. Math. Hung. 70 (2015), 233–247. | DOI | MR
Cité par Sources :