Keywords: filter; co-annihilator; coaxial filter; strongly coaxial filter; $pm$-lattice; normal prime filter
@article{10_5817_AM2023_5_397,
author = {Sambasiva Rao, M.},
title = {Coaxial filters of distributive lattices},
journal = {Archivum mathematicum},
pages = {397--409},
year = {2023},
volume = {59},
number = {5},
doi = {10.5817/AM2023-5-397},
mrnumber = {4641954},
zbl = {07790555},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-5-397/}
}
Sambasiva Rao, M. Coaxial filters of distributive lattices. Archivum mathematicum, Tome 59 (2023) no. 5, pp. 397-409. doi: 10.5817/AM2023-5-397
[1] Birkhoff, G.: Lattice theory. Third edition American Mathematical Society Colloquium Publications, vol. XXV, American Mathematical Society, Providence, R.I., 1967. | MR | Zbl
[2] Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Springer Verlag, 1981. | MR | Zbl
[3] Cornish, W.H.: Normal lattices. J. Aust. Math. Soc. 14 (1972), 200–215. | DOI | MR
[4] Cornish, W.H.: Annulets and $\alpha $-ideals in distributive lattices. J. Aust. Math. Soc. 15 (1973), 70–77. | DOI | MR
[5] Mandelker, M.: Relative annihilators in lattices. Duke Math. J. 37 (1970), 377–386. | DOI | MR | Zbl
[6] Pawar, Y.S., Thakare, N.K.: $pm$-lattice. Algebra Universalis 7 (1977), 259–263. | DOI | MR
[7] Rao, M. Sambasiva: Normal filters of distributive lattices. Bull. Sect. Logic Univ. Łódź 41 (3) (2012), 131–143. | MR
[8] Rao, M. Sambasiva: $\mu $-filters of distributive lattices. Southeast Asian Bull. Math. 40 (2016), 251–264. | MR
[9] Speed, T.P.: Some remarks on a class of distributive lattices. J. Aust. Math. Soc. 9 (1969), 289–296. | DOI | MR
Cité par Sources :