Some properties of algebras of real-valued measurable functions
Archivum mathematicum, Tome 59 (2023) no. 5, pp. 383-395
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $ M(X, \mathscr{A})$ ($M^{*}(X, \mathscr{A})$) be the $f$-ring of all (bounded) real-measurable functions on a $T$-measurable space $(X, \mathscr{A})$, let $M_{K}(X, \mathscr{A})$ be the family of all $f\in M(X, \mathscr{A})$ such that ${{\,\mathrm{coz}}}(f)$ is compact, and let $M_{\infty }(X, \mathscr{A})$ be all $f\in M(X, \mathscr{A})$ that $\lbrace x\in X: |f(x)|\ge \frac{1}{n}\rbrace $ is compact for any $n\in \mathbb{N}$. We introduce realcompact subrings of $M(X, \mathscr{A})$, we show that $M^{*}(X, \mathscr{A})$ is a realcompact subring of $M(X, \mathscr{A})$, and also $M(X, \mathscr{A})$ is a realcompact if and only if $(X, \mathscr{A})$ is a compact measurable space. For every nonzero real Riesz map $\varphi : M(X, \mathscr{A})\rightarrow \mathbb{R}$, we prove that there is an element $x_0\in X$ such that $\varphi (f) =f(x_0)$ for every $f\in M(X, \mathscr{A})$ if $(X, \mathscr{A})$ is a compact measurable space. We confirm that $M_{\infty }(X, \mathscr{A})$ is equal to the intersection of all free maximal ideals of $M^{*}(X, \mathscr{A})$, and also $M_{K}(X, \mathscr{A})$ is equal to the intersection of all free ideals of $M(X, \mathscr{A})$ (or $M^{*}(X, \mathscr{A})$). We show that $M_{\infty }(X, \mathscr{A})$ and $M_{K}(X, \mathscr{A})$ do not have free ideal.
DOI :
10.5817/AM2023-5-383
Classification :
12J15, 28A20, 54C30
Keywords: real measurable function; lattice-ordered ring; realcompact measurable space; real Riesz map; free ideal
Keywords: real measurable function; lattice-ordered ring; realcompact measurable space; real Riesz map; free ideal
@article{10_5817_AM2023_5_383,
author = {Estaji, Ali Akbar and Mahmoudi Darghadam, Ahmad},
title = {Some properties of algebras of real-valued measurable functions},
journal = {Archivum mathematicum},
pages = {383--395},
publisher = {mathdoc},
volume = {59},
number = {5},
year = {2023},
doi = {10.5817/AM2023-5-383},
mrnumber = {4641953},
zbl = {07790554},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-5-383/}
}
TY - JOUR AU - Estaji, Ali Akbar AU - Mahmoudi Darghadam, Ahmad TI - Some properties of algebras of real-valued measurable functions JO - Archivum mathematicum PY - 2023 SP - 383 EP - 395 VL - 59 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-5-383/ DO - 10.5817/AM2023-5-383 LA - en ID - 10_5817_AM2023_5_383 ER -
%0 Journal Article %A Estaji, Ali Akbar %A Mahmoudi Darghadam, Ahmad %T Some properties of algebras of real-valued measurable functions %J Archivum mathematicum %D 2023 %P 383-395 %V 59 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-5-383/ %R 10.5817/AM2023-5-383 %G en %F 10_5817_AM2023_5_383
Estaji, Ali Akbar; Mahmoudi Darghadam, Ahmad. Some properties of algebras of real-valued measurable functions. Archivum mathematicum, Tome 59 (2023) no. 5, pp. 383-395. doi: 10.5817/AM2023-5-383
Cité par Sources :