Keywords: real measurable function; lattice-ordered ring; realcompact measurable space; real Riesz map; free ideal
@article{10_5817_AM2023_5_383,
author = {Estaji, Ali Akbar and Mahmoudi Darghadam, Ahmad},
title = {Some properties of algebras of real-valued measurable functions},
journal = {Archivum mathematicum},
pages = {383--395},
year = {2023},
volume = {59},
number = {5},
doi = {10.5817/AM2023-5-383},
mrnumber = {4641953},
zbl = {07790554},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-5-383/}
}
TY - JOUR AU - Estaji, Ali Akbar AU - Mahmoudi Darghadam, Ahmad TI - Some properties of algebras of real-valued measurable functions JO - Archivum mathematicum PY - 2023 SP - 383 EP - 395 VL - 59 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-5-383/ DO - 10.5817/AM2023-5-383 LA - en ID - 10_5817_AM2023_5_383 ER -
%0 Journal Article %A Estaji, Ali Akbar %A Mahmoudi Darghadam, Ahmad %T Some properties of algebras of real-valued measurable functions %J Archivum mathematicum %D 2023 %P 383-395 %V 59 %N 5 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-5-383/ %R 10.5817/AM2023-5-383 %G en %F 10_5817_AM2023_5_383
Estaji, Ali Akbar; Mahmoudi Darghadam, Ahmad. Some properties of algebras of real-valued measurable functions. Archivum mathematicum, Tome 59 (2023) no. 5, pp. 383-395. doi: 10.5817/AM2023-5-383
[1] Acharyya, S., Acharyya, S.K., Bag, S., Sack, J.: Recent progress in rings and subrings of real valued measurable functions. math.GN, 6 Nov. (2018), | arXiv | MR
[2] Aliabad, A.R., Azarpanah, F., Namdari, M.: Rings of continuous functions vanishing at infinity. Comment. Mat. Univ. Carolinae 45 (3) (2004), 519–533. | MR
[3] Dube, T.: On the ideal of functions with compact support in pointfree function rings. Acta Math. Hungar. 129 (3) (2010), 205–226. | DOI | MR | Zbl
[4] Ebrahimi, M.M., Karimi Feizabadi, A.: Prime representation of real Riesz maps. Algebra Universalis 54 (2005), 291–299. | DOI | MR
[5] Ebrahimi, M.M., Mahmoudi, M.: Frame. Tech. report, Shahid Beheshti University, 1996.
[6] Ercan, Z., Onal, S.: A remark on the homomorphism on C(X). Amer. Math. Soc. 133 (2005), 3609–3611. | DOI | MR
[7] Estaji, A.A., Mahmoudi Darghadam, A.: Rings of real measurable functions vanishing at infinity on a measurable space. submitted. | MR
[8] Estaji, A.A., Mahmoudi Darghadam, A.: On maximal ideals of $\mathcal{R}_{\infty }$L. J. Algebr. Syst. 6 (1) (2018), 43–57. | MR
[9] Estaji, A.A., Mahmoudi Darghadam, A.: Rings of continuous functions vanishing at infinity on a frame. Quaest. Math. 42 (9) (2019), 1141–1157, | DOI | MR
[10] Estaji, A.A., Mahmoudi Darghadam, A.: Rings of frame maps from $\mathcal{P}(\mathbb{R})$ to frames which vanish at infinity. Hacet. J. Math. Stat. 49 (2) (2020), 854–868, | DOI | MR
[11] Estaji, A.A., Mahmoudi Darghadam, A., Yousefpour, H.: Maximal ideals in rings of real measurable functions. Filomat 32 (15) (2018), 5191–5203, | DOI | MR
[12] Gillman, L., Jerison, M.: Rings of continuous functions. Springer Verlag, 1976. | MR
[13] Hager, A.: Algebras of measurable functions. Duke Math. J. 38 (1) (1971), 21–27. | DOI | MR
[14] Hewitt, E.: Rings of real-valued continuous functions. Trans. Amer. Math. Soc. 64 (1948), 45–99. | DOI | MR
[15] Kohls, C.W.: Ideals in rings of continuous functions. Fund. Math. 45 (1957), 28–50. | DOI | MR
[16] Rudin, W.: Real and complex analysis. 3rd ed., New York: McGraw-Hill Book Co., 1987. | MR
Cité par Sources :