Some properties of algebras of real-valued measurable functions
Archivum mathematicum, Tome 59 (2023) no. 5, pp. 383-395.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $ M(X, \mathscr{A})$ ($M^{*}(X, \mathscr{A})$) be the $f$-ring of all (bounded) real-measurable functions on a $T$-measurable space $(X, \mathscr{A})$, let $M_{K}(X, \mathscr{A})$ be the family of all $f\in M(X, \mathscr{A})$ such that ${{\,\mathrm{coz}}}(f)$ is compact, and let $M_{\infty }(X, \mathscr{A})$ be all $f\in M(X, \mathscr{A})$ that $\lbrace x\in X: |f(x)|\ge \frac{1}{n}\rbrace $ is compact for any $n\in \mathbb{N}$. We introduce realcompact subrings of $M(X, \mathscr{A})$, we show that $M^{*}(X, \mathscr{A})$ is a realcompact subring of $M(X, \mathscr{A})$, and also $M(X, \mathscr{A})$ is a realcompact if and only if $(X, \mathscr{A})$ is a compact measurable space. For every nonzero real Riesz map $\varphi : M(X, \mathscr{A})\rightarrow \mathbb{R}$, we prove that there is an element $x_0\in X$ such that $\varphi (f) =f(x_0)$ for every $f\in M(X, \mathscr{A})$ if $(X, \mathscr{A})$ is a compact measurable space. We confirm that $M_{\infty }(X, \mathscr{A})$ is equal to the intersection of all free maximal ideals of $M^{*}(X, \mathscr{A})$, and also $M_{K}(X, \mathscr{A})$ is equal to the intersection of all free ideals of $M(X, \mathscr{A})$ (or $M^{*}(X, \mathscr{A})$). We show that $M_{\infty }(X, \mathscr{A})$ and $M_{K}(X, \mathscr{A})$ do not have free ideal.
DOI : 10.5817/AM2023-5-383
Classification : 12J15, 28A20, 54C30
Keywords: real measurable function; lattice-ordered ring; realcompact measurable space; real Riesz map; free ideal
@article{10_5817_AM2023_5_383,
     author = {Estaji, Ali Akbar and Mahmoudi Darghadam, Ahmad},
     title = {Some properties of algebras of real-valued measurable functions},
     journal = {Archivum mathematicum},
     pages = {383--395},
     publisher = {mathdoc},
     volume = {59},
     number = {5},
     year = {2023},
     doi = {10.5817/AM2023-5-383},
     mrnumber = {4641953},
     zbl = {07790554},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-5-383/}
}
TY  - JOUR
AU  - Estaji, Ali Akbar
AU  - Mahmoudi Darghadam, Ahmad
TI  - Some properties of algebras of real-valued measurable functions
JO  - Archivum mathematicum
PY  - 2023
SP  - 383
EP  - 395
VL  - 59
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-5-383/
DO  - 10.5817/AM2023-5-383
LA  - en
ID  - 10_5817_AM2023_5_383
ER  - 
%0 Journal Article
%A Estaji, Ali Akbar
%A Mahmoudi Darghadam, Ahmad
%T Some properties of algebras of real-valued measurable functions
%J Archivum mathematicum
%D 2023
%P 383-395
%V 59
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-5-383/
%R 10.5817/AM2023-5-383
%G en
%F 10_5817_AM2023_5_383
Estaji, Ali Akbar; Mahmoudi Darghadam, Ahmad. Some properties of algebras of real-valued measurable functions. Archivum mathematicum, Tome 59 (2023) no. 5, pp. 383-395. doi : 10.5817/AM2023-5-383. http://geodesic.mathdoc.fr/articles/10.5817/AM2023-5-383/

Cité par Sources :