Keywords: approximate solution; variable coefficients; generalized logistic equation; conditional Ulam stability; limit cycle
@article{10_5817_AM2023_1_85,
author = {Onitsuka, Masakazu},
title = {Approximation of limit cycle of differential systems with variable coefficients},
journal = {Archivum mathematicum},
pages = {85--97},
year = {2023},
volume = {59},
number = {1},
doi = {10.5817/AM2023-1-85},
mrnumber = {4563019},
zbl = {07675577},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-85/}
}
TY - JOUR AU - Onitsuka, Masakazu TI - Approximation of limit cycle of differential systems with variable coefficients JO - Archivum mathematicum PY - 2023 SP - 85 EP - 97 VL - 59 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-85/ DO - 10.5817/AM2023-1-85 LA - en ID - 10_5817_AM2023_1_85 ER -
Onitsuka, Masakazu. Approximation of limit cycle of differential systems with variable coefficients. Archivum mathematicum, Tome 59 (2023) no. 1, pp. 85-97. doi: 10.5817/AM2023-1-85
[1] Anderson, D.R., Onitsuka, M.: Hyers-Ulam stability for differential systems with $2\times 2$ constant coefficient matrix. Results Math. 77 (2022), 23, Paper No. 136. | DOI | MR
[2] Benterki, R., Jimenez, J., Llibre, J.: Limit cycles of planar discontinuous piecewise linear Hamiltonian systems without equilibria separated by reducible cubics. Electron. J. Qual. Theory Differ. Equ. 2021 (2021), 38 pp., Paper No. 69. | MR
[3] Boukoucha, R.: Limit cycles explicitly given for a class of a differential systems. Nonlinear Stud. 28 (2) (2021), 375–387. | MR
[4] Castro, L.P., Simões, A.M.: A Hyers-Ulam stability analysis for classes of Bessel equations. Filomat 35 (13) (2021), 4391–4403. | DOI | MR
[5] Deepa, S., Bowmiya, S., Ganesh, A., Govindan, V., Park, C., Lee, J.: Mahgoub transform and Hyers-Ulam stability of n-th order linear differential equations. AIMS Math. 7 (4) (2022), 4992–5014. | DOI | MR
[6] Devi, A., Kumar, A.: Hyers-Ulam stability and existence of solution for hybrid fractional differential equation with $p$-Laplacian operator. Chaos Solitons Fractals 156 (2022), 8 pp., Paper No. 111859. | MR
[7] Diab, Z., Guirao, J.L.G., Vera, J.A.: On the limit cycles for a class of generalized Liénard differential systems. Dyn. Syst. 37 (1) (2022), 1–8. | DOI | MR
[8] Fečkan, M., Li, Q., Wang, J.: Existence and Ulam-Hyers stability of positive solutions for a nonlinear model for the Antarctic Circumpolar Current. Monatsh. Math. 197 (3) (2022), 419–434. | DOI | MR
[9] Galias, Z., Tucker, W.: The Songling system has exactly four limit cycles. Appl. Math. Comput. 415 (2022), 8 pp., Paper No. 126691. | MR
[10] Gong, S., Han, M.: An estimate of the number of limit cycles bifurcating from a planar integrable system. Bull. Sci. Math. 176 (2022), 39 pp., Paper No. 103118. | MR
[11] Huang, J., Li, J.: On the number of limit cycles in piecewise smooth generalized Abel equations with two asymmetric zones. Nonlinear Anal. Real World Appl. 66 (2022), 17 pp., Paper No. 103551. | MR
[12] Jung, S.-M., Ponmana Selvan, A., Murali, R.: Mahgoub transform and Hyers–Ulam stability of first-order linear differential equations. J. Math. Inequal. 15 (3) (2021), 1201–1218. | DOI | MR
[13] Kelley, W.G., Peterson, A.C.: The Theory of Differential Equations: Classical and Qualitative. Springer, New York, 2010, Second Edition, Universitext. | MR
[14] Li, J., Han, M.: Planar integrable nonlinear oscillators having a stable limit cycle. J. Appl. Anal. Comput. 12 (2) (2022), 862–867. | MR
[15] Nam, Y.W.: Hyers-Ulam stability of loxodromic Möbius difference equation. Appl. Math. Comput. 356 (2019), 119–136. | DOI | MR
[16] Onitsuka, M.: Approximate solutions of generalized logistic equation. submitted.
[17] Onitsuka, M.: Conditional Ulam stability and its application to the logistic model. Appl. Math. Lett. 122 (2021), 7 pp., Paper No. 107565. | MR
[18] Onitsuka, M.: Conditional Ulam stability and its application to von Bertalanffy growth model. Math. Biosci. Eng. 19 (3) (2022), 2819–2834. | DOI | MR
[19] Onitsuka, M., El-Fassi, Iz.: On approximate solutions of a class of Clairaut’s equations. Appl. Math. Comput. 428 (2022), 13 pp., Paper No. 127205. | DOI | MR
[20] Sugie, J., Ishibashi, K.: Limit cycles of a class of Liénard systems derived from state-dependent impulses. Nonlinear Anal. Hybrid Syst. 45 (2022), 16 pp., Paper No. 101188. | MR
Cité par Sources :