Keywords: dynamical systems; topological dynamics; topological equivalence; axiomatic theory of ordinary differential equations
@article{10_5817_AM2023_1_133,
author = {Suda, Tomoharu},
title = {Equivalence of ill-posed dynamical systems},
journal = {Archivum mathematicum},
pages = {133--140},
year = {2023},
volume = {59},
number = {1},
doi = {10.5817/AM2023-1-133},
mrnumber = {4563024},
zbl = {07675582},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-133/}
}
Suda, Tomoharu. Equivalence of ill-posed dynamical systems. Archivum mathematicum, Tome 59 (2023) no. 1, pp. 133-140. doi: 10.5817/AM2023-1-133
[1] Aubin, J.P., Cellina, A.: Differential Inclusions. Springer-Verlag, Berlin, 1984. | Zbl
[2] Ball, J.M.: Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations. Mechanics: from theory to computation, Springer, New York, 2000, pp. 447–474.
[3] Filippov, V.V.: The topological structure of solution spaces of ordinary differential equations. Russ. Math. Surv. 48 (101) (1993), 101–154, Translated from Uspekhi Mat. Nauk. 48, no. 1, 103–154. | DOI
[4] Filippov, V.V.: Basic Topological Structures of Ordinary Differential Equations. Kluwer Acad., Dortrecht, 1998.
[5] Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. second ed., Springer-Verlag, New York, 1998. | Zbl
[6] Suda, T.: Equivalence of topological dynamics without well-posedness. Topology Appl. 312 (2022), 25 pp., Paper No. 108045. | DOI | MR
[7] Yorke, J.A.: Spaces of solutions. Mathematical Systems Theory and Economics I/II, (Proc. Internat. Summer School, Varenna, 1967). Lecture Notes in Operations Research and Mathematical Economics, Vols. 11, 12, Springer, Berlin, 1969, pp. 383–403.
Cité par Sources :