Keywords: coherent ideal; strongly coherent ideal; median prime ideal; maximal ideal; Stone lattice; Boolean algebra
@article{10_5817_AM2022_4_213,
author = {Sambasiva Rao, M.},
title = {Median prime ideals of pseudo-complemented distributive lattices},
journal = {Archivum mathematicum},
pages = {213--226},
year = {2022},
volume = {58},
number = {4},
doi = {10.5817/AM2022-4-213},
mrnumber = {4529814},
zbl = {07655744},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2022-4-213/}
}
TY - JOUR AU - Sambasiva Rao, M. TI - Median prime ideals of pseudo-complemented distributive lattices JO - Archivum mathematicum PY - 2022 SP - 213 EP - 226 VL - 58 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2022-4-213/ DO - 10.5817/AM2022-4-213 LA - en ID - 10_5817_AM2022_4_213 ER -
Sambasiva Rao, M. Median prime ideals of pseudo-complemented distributive lattices. Archivum mathematicum, Tome 58 (2022) no. 4, pp. 213-226. doi: 10.5817/AM2022-4-213
[1] Balbes, R., Horn, A.: Stone lattices. Duke Math. J. 37 (1970), 537–545. | MR | Zbl
[2] Birkhoff, G.: Lattice theory. Amer. Math. Soc. Colloq. XXV, Providence, USA, 1967. | MR | Zbl
[3] Cornish, W.H.: Normal lattices. J. Aust. Math. Soc. 14 (1972), 200–215. | DOI | MR
[4] Frink, O.: Pseudo-complements in semi-lattices. Duke Math. J. 29 (1962), 505–514. | DOI | MR | Zbl
[5] Gratzer, G.: General lattice theory. Academic Press, New York, San Francisco, USA, 1978. | MR
[6] Rao, M. Sambasiva: $\delta $-ideals in pseudo-complemented distributive lattices. Arch. Math. (Brno) 48 (2) (2012), 97–105. | MR
[7] Rao, M. Sambasiva, Badawy, Abd. El-Mohsen: Normal ideals of pseudo-complemented distributive lattices. Chamchuri J. Math. 9 (2017), 61–73. | MR
[8] Speed, T.P.: On Stone lattices. J. Aust. Math. Soc. 9 (3–4) (1969), 297–307. | DOI | MR
[9] Speed, T.P.: Some remarks on a class of distributive lattices. J. Aust. Math. Soc. 9 (1969), 289–296. | DOI | MR
[10] Stone, M.H.: A theory of representations for Boolean algebras. Trans. Amer. Math. Soc. 40 (1936), 37–111. | MR
[11] Venatanarasimham, P.V.: Pseudo-complements in Posets. Proc. Amer. Math. Soc. 28 (1) (1971), 9–17. | DOI | MR
Cité par Sources :