Porous media equation on locally finite graphs
Archivum mathematicum, Tome 58 (2022) no. 3, pp. 177-187 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we consider two typical problems on a locally finite connected graph. The first one is to study the Bochner formula for the Laplacian operator on a locally finite connected graph. The other one is to obtain global nontrivial nonnegative solution to porous-media equation via the use of Aronson-Benilan argument. We use the curvature dimension condition to give a characterization two point graph. We also give a porous-media equation criterion about stochastic completeness of the graph. There is not much work in the direction of the study of nonlinear heat equations on locally finite connected graphs.
In this paper, we consider two typical problems on a locally finite connected graph. The first one is to study the Bochner formula for the Laplacian operator on a locally finite connected graph. The other one is to obtain global nontrivial nonnegative solution to porous-media equation via the use of Aronson-Benilan argument. We use the curvature dimension condition to give a characterization two point graph. We also give a porous-media equation criterion about stochastic completeness of the graph. There is not much work in the direction of the study of nonlinear heat equations on locally finite connected graphs.
DOI : 10.5817/AM2022-3-177
Classification : 05C50, 35Jxx, 53Cxx, 58J35, 68R10
Keywords: Bochner formula; heat equation; global solution; stochastic completeness; porous-media equation; McKean type estimate
@article{10_5817_AM2022_3_177,
     author = {Ma, Li},
     title = {Porous media equation on locally finite graphs},
     journal = {Archivum mathematicum},
     pages = {177--187},
     year = {2022},
     volume = {58},
     number = {3},
     doi = {10.5817/AM2022-3-177},
     mrnumber = {4483052},
     zbl = {07584089},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2022-3-177/}
}
TY  - JOUR
AU  - Ma, Li
TI  - Porous media equation on locally finite graphs
JO  - Archivum mathematicum
PY  - 2022
SP  - 177
EP  - 187
VL  - 58
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2022-3-177/
DO  - 10.5817/AM2022-3-177
LA  - en
ID  - 10_5817_AM2022_3_177
ER  - 
%0 Journal Article
%A Ma, Li
%T Porous media equation on locally finite graphs
%J Archivum mathematicum
%D 2022
%P 177-187
%V 58
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2022-3-177/
%R 10.5817/AM2022-3-177
%G en
%F 10_5817_AM2022_3_177
Ma, Li. Porous media equation on locally finite graphs. Archivum mathematicum, Tome 58 (2022) no. 3, pp. 177-187. doi: 10.5817/AM2022-3-177

[1] Bauer, F., Horn, P., Yong, Lin, Lippner, G., Mangoubi, D., Shing-Tung, Yau: Li-Yau inequality on graphs. J. Differential Geom. 99 (3) (2015), 359–405. | DOI | MR

[2] Chavel, I., Karp, L.: Large time behavior of the heat kernel: the parabolic-potential alternative. Comment. Math. Helv. 66 (4) (1991), 541–556, DOI 10.1007/BF02566664. | DOI | MR

[3] Chung, F.R.K.: Spectral graph theory. CBMS Regional Conf. Ser. in Math., 1997. xii+207 pp. ISBN: 0-8218-0315-8. | MR

[4] Haeseler, S., Keller, M., Lenz, D., Wojciechowski, R.: Laplacians on infinite graphs: Dirichlet and Neumann boundary conditions. J. Spectr. Theory 2 (4) (2012), 397–432. | DOI | MR

[5] Horn, P., Yong, Lin, Shuang, Liu, Shing-Tung, Yau: Volume doubling, Poincaré inequality and Gaussian heat kernel estimate for non-negatively curved graphs. arXiv:1411. 5087v4. | MR

[6] Ji, L., Mazzeo, R., Sesum, N.: Ricci flow on surfaces with cusps. Math. Ann. 345 (2009), 819–834. | DOI | MR

[7] Keller, M., Lenz, D.: Unbounded Laplacians on graphs: basic spectral properties and the heat equation. Math. Model. Nat. Phenom. 5 (4) (2010), 198–224. | DOI | MR

[8] Lin, Y., Liu, S.: Equivalent properties of CD inequality on grap. arXiv:1512.02677, 2015. | MR

[9] Lin, Y., Yau, S.T.: Ricci curvature and eigen-value estimate on locally finite graphs. Math. Res. Lett. 17 (2010), 343–356. | DOI | MR

[10] Ma, L.: Harnack’s inequality and Green’s functions on locally finite graphs. Nonlinear Anal. 170 (2018), 226–237. | MR

[11] Ma, L., Wang, X.Y.: Kato’s inequality and Liouville theorems on locally finite graphs. Sci. China Math. 56 (4) (2013), 771–776. | DOI | MR

[12] Ma, L., Witt, I.: Discrete Morse flow for the Ricci flow and porous media equation. Commun. Nonlinear Sci. Numer. Simul. 59 (2018), 158–164. | DOI | MR

[13] Weber, A.: Analysis of the physical Laplacian and the heat flow on a locally finite graph. J. Math. Anal. Appl. 370 (1) (2010), 146–158. | DOI | MR

[14] Wojciechowski, R.K.: Heat kernel and essential spectrum of infinite graphs. Indiana Univ. Math. J. 58 (3) (2009), 1419–1441. | DOI | MR

Cité par Sources :