Keywords: Bochner formula; heat equation; global solution; stochastic completeness; porous-media equation; McKean type estimate
@article{10_5817_AM2022_3_177,
author = {Ma, Li},
title = {Porous media equation on locally finite graphs},
journal = {Archivum mathematicum},
pages = {177--187},
year = {2022},
volume = {58},
number = {3},
doi = {10.5817/AM2022-3-177},
mrnumber = {4483052},
zbl = {07584089},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2022-3-177/}
}
Ma, Li. Porous media equation on locally finite graphs. Archivum mathematicum, Tome 58 (2022) no. 3, pp. 177-187. doi: 10.5817/AM2022-3-177
[1] Bauer, F., Horn, P., Yong, Lin, Lippner, G., Mangoubi, D., Shing-Tung, Yau: Li-Yau inequality on graphs. J. Differential Geom. 99 (3) (2015), 359–405. | DOI | MR
[2] Chavel, I., Karp, L.: Large time behavior of the heat kernel: the parabolic-potential alternative. Comment. Math. Helv. 66 (4) (1991), 541–556, DOI 10.1007/BF02566664. | DOI | MR
[3] Chung, F.R.K.: Spectral graph theory. CBMS Regional Conf. Ser. in Math., 1997. xii+207 pp. ISBN: 0-8218-0315-8. | MR
[4] Haeseler, S., Keller, M., Lenz, D., Wojciechowski, R.: Laplacians on infinite graphs: Dirichlet and Neumann boundary conditions. J. Spectr. Theory 2 (4) (2012), 397–432. | DOI | MR
[5] Horn, P., Yong, Lin, Shuang, Liu, Shing-Tung, Yau: Volume doubling, Poincaré inequality and Gaussian heat kernel estimate for non-negatively curved graphs. arXiv:1411. 5087v4. | MR
[6] Ji, L., Mazzeo, R., Sesum, N.: Ricci flow on surfaces with cusps. Math. Ann. 345 (2009), 819–834. | DOI | MR
[7] Keller, M., Lenz, D.: Unbounded Laplacians on graphs: basic spectral properties and the heat equation. Math. Model. Nat. Phenom. 5 (4) (2010), 198–224. | DOI | MR
[8] Lin, Y., Liu, S.: Equivalent properties of CD inequality on grap. arXiv:1512.02677, 2015. | MR
[9] Lin, Y., Yau, S.T.: Ricci curvature and eigen-value estimate on locally finite graphs. Math. Res. Lett. 17 (2010), 343–356. | DOI | MR
[10] Ma, L.: Harnack’s inequality and Green’s functions on locally finite graphs. Nonlinear Anal. 170 (2018), 226–237. | MR
[11] Ma, L., Wang, X.Y.: Kato’s inequality and Liouville theorems on locally finite graphs. Sci. China Math. 56 (4) (2013), 771–776. | DOI | MR
[12] Ma, L., Witt, I.: Discrete Morse flow for the Ricci flow and porous media equation. Commun. Nonlinear Sci. Numer. Simul. 59 (2018), 158–164. | DOI | MR
[13] Weber, A.: Analysis of the physical Laplacian and the heat flow on a locally finite graph. J. Math. Anal. Appl. 370 (1) (2010), 146–158. | DOI | MR
[14] Wojciechowski, R.K.: Heat kernel and essential spectrum of infinite graphs. Indiana Univ. Math. J. 58 (3) (2009), 1419–1441. | DOI | MR
Cité par Sources :