Remotely $c$-almost periodic type functions in ${\mathbb{R}}^{n}$
Archivum mathematicum, Tome 58 (2022) no. 2, pp. 85-104
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper, we relate the notions of remote almost periodicity and quasi-asymptotical almost periodicity; in actual fact, we observe that a remotely almost periodic function is nothing else but a bounded, uniformly continuous quasi-asymptotically almost periodic function. We introduce and analyze several new classes of remotely $c$-almost periodic functions in ${\mathbb{R}}^{n},$ slowly oscillating functions in ${\mathbb{R}}^{n},$ and further analyze the recently introduced class of quasi-asymptotically $c$-almost periodic functions in ${\mathbb{R}}^{n}.$ We provide certain applications of our theoretical results to the abstract Volterra integro-differential equations and the ordinary differential equations.
DOI :
10.5817/AM2022-2-85
Classification :
42A75, 43A60, 47D99
Keywords: remotely $c$-almost periodic functions in ${\mathbb{R}}^{n}$; slowly oscillating functions in ${\mathbb{R}}^{n}$; quasi-asymptotically $c$-almost periodic functions in ${\mathbb{R}}^{n}$; abstract Volterra integro-differential equations; Richard-Chapman ordinary differential equation with external perturbation
Keywords: remotely $c$-almost periodic functions in ${\mathbb{R}}^{n}$; slowly oscillating functions in ${\mathbb{R}}^{n}$; quasi-asymptotically $c$-almost periodic functions in ${\mathbb{R}}^{n}$; abstract Volterra integro-differential equations; Richard-Chapman ordinary differential equation with external perturbation
@article{10_5817_AM2022_2_85,
author = {Kosti\'c, Marco and Kumar, Vipin},
title = {Remotely $c$-almost periodic type functions in ${\mathbb{R}}^{n}$},
journal = {Archivum mathematicum},
pages = {85--104},
publisher = {mathdoc},
volume = {58},
number = {2},
year = {2022},
doi = {10.5817/AM2022-2-85},
mrnumber = {4448485},
zbl = {07547203},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2022-2-85/}
}
TY - JOUR
AU - Kostić, Marco
AU - Kumar, Vipin
TI - Remotely $c$-almost periodic type functions in ${\mathbb{R}}^{n}$
JO - Archivum mathematicum
PY - 2022
SP - 85
EP - 104
VL - 58
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2022-2-85/
DO - 10.5817/AM2022-2-85
LA - en
ID - 10_5817_AM2022_2_85
ER -
Kostić, Marco; Kumar, Vipin. Remotely $c$-almost periodic type functions in ${\mathbb{R}}^{n}$. Archivum mathematicum, Tome 58 (2022) no. 2, pp. 85-104. doi: 10.5817/AM2022-2-85
Cité par Sources :