Remotely $c$-almost periodic type functions in ${\mathbb{R}}^{n}$
Archivum mathematicum, Tome 58 (2022) no. 2, pp. 85-104 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we relate the notions of remote almost periodicity and quasi-asymptotical almost periodicity; in actual fact, we observe that a remotely almost periodic function is nothing else but a bounded, uniformly continuous quasi-asymptotically almost periodic function. We introduce and analyze several new classes of remotely $c$-almost periodic functions in ${\mathbb{R}}^{n},$ slowly oscillating functions in ${\mathbb{R}}^{n},$ and further analyze the recently introduced class of quasi-asymptotically $c$-almost periodic functions in ${\mathbb{R}}^{n}.$ We provide certain applications of our theoretical results to the abstract Volterra integro-differential equations and the ordinary differential equations.
In this paper, we relate the notions of remote almost periodicity and quasi-asymptotical almost periodicity; in actual fact, we observe that a remotely almost periodic function is nothing else but a bounded, uniformly continuous quasi-asymptotically almost periodic function. We introduce and analyze several new classes of remotely $c$-almost periodic functions in ${\mathbb{R}}^{n},$ slowly oscillating functions in ${\mathbb{R}}^{n},$ and further analyze the recently introduced class of quasi-asymptotically $c$-almost periodic functions in ${\mathbb{R}}^{n}.$ We provide certain applications of our theoretical results to the abstract Volterra integro-differential equations and the ordinary differential equations.
DOI : 10.5817/AM2022-2-85
Classification : 42A75, 43A60, 47D99
Keywords: remotely $c$-almost periodic functions in ${\mathbb{R}}^{n}$; slowly oscillating functions in ${\mathbb{R}}^{n}$; quasi-asymptotically $c$-almost periodic functions in ${\mathbb{R}}^{n}$; abstract Volterra integro-differential equations; Richard-Chapman ordinary differential equation with external perturbation
@article{10_5817_AM2022_2_85,
     author = {Kosti\'c, Marco and Kumar, Vipin},
     title = {Remotely $c$-almost periodic type functions in ${\mathbb{R}}^{n}$},
     journal = {Archivum mathematicum},
     pages = {85--104},
     year = {2022},
     volume = {58},
     number = {2},
     doi = {10.5817/AM2022-2-85},
     mrnumber = {4448485},
     zbl = {07547203},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2022-2-85/}
}
TY  - JOUR
AU  - Kostić, Marco
AU  - Kumar, Vipin
TI  - Remotely $c$-almost periodic type functions in ${\mathbb{R}}^{n}$
JO  - Archivum mathematicum
PY  - 2022
SP  - 85
EP  - 104
VL  - 58
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2022-2-85/
DO  - 10.5817/AM2022-2-85
LA  - en
ID  - 10_5817_AM2022_2_85
ER  - 
%0 Journal Article
%A Kostić, Marco
%A Kumar, Vipin
%T Remotely $c$-almost periodic type functions in ${\mathbb{R}}^{n}$
%J Archivum mathematicum
%D 2022
%P 85-104
%V 58
%N 2
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2022-2-85/
%R 10.5817/AM2022-2-85
%G en
%F 10_5817_AM2022_2_85
Kostić, Marco; Kumar, Vipin. Remotely $c$-almost periodic type functions in ${\mathbb{R}}^{n}$. Archivum mathematicum, Tome 58 (2022) no. 2, pp. 85-104. doi: 10.5817/AM2022-2-85

[1] Alvarez, E., Castillo, S., Pinto, M.: $(\omega ,c)$-pseudo periodic functions, first order Cauchy problem and Lasota-Wazewska model with ergodic and unbounded oscillating production of red cells. Bound. Value Probl. 106 (2019), 1–20. | MR

[2] Alvarez, E., Castillo, S., Pinto, M.: $(\omega ,c)$-asymptotically periodic functions, first-order Cauchy problem, and Lasota-Wazewska model with unbounded oscillating production of red cells. Math. Methods Appl. Sci. 43 (2020), 305–319. | DOI | MR

[3] Alvarez, E., Gómez, A., Pinto, M.: $(\omega ,c)$-periodic functions and mild solution to abstract fractional integro-differential equations. Electron. J. Qual. Theory Differ. Equ. 16 (2018), 1–8. | DOI | MR

[4] Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-valued Laplace transforms and Cauchy problems. Birkhäuser, Springer Basel AG, 2001. | MR

[5] Besicovitch, A.S.: Almost Periodic Functions. Dover Publ., New York, 1954. | MR

[6] Blot, J., Cieutat, P., N’Guérékata, G.M.: S-asymptotically $\omega $-periodic functions and applications to evolution equations. -asymptotically $\omega $-periodic functions and applications to evolution equations, African Diaspora J. Math. 12 (2011), 113–121. | MR

[7] Brindle, D.: $S$-asymptotically $\omega $-periodic functions and sequences and applications to evolution equations. Ph.D. thesis, Morgan State University, 2019, https://mdsoar.org/handle/11603/17680 | MR

[8] Chang, Y.-K., Wei, Y.: $S$-asymptotically Bloch type periodic solutions to some semi-linear evolution equations in Banach spaces. Acta Math. Sci. 41B (2021), 413–425. | DOI | MR

[9] Chávez, A., Khalil, K., Kostić, M., Pinto, M.: Multi-dimensional almost periodic type functions and applications. submitted 2020, arXiv:2012.00543.

[10] Chávez, A., Khalil, K., Kostić, M., Pinto, M.: Multi-dimensional almost automorphic type functions and applications. Bull. Braz. Math. Soc. (N.S.) (2022), 1–51, https/doi.org/10.1007/s00574-022-00284-x | DOI | MR

[11] Cuevas, C., de Souza, J.C.: Existence of S-asymptotically $\omega $-periodic solutions for fractional order functional integro-differential equations with infinite delay. Nonlinear Anal. 72 (2010), 1683–1689. | DOI | MR

[12] Diagana, T.: Almost automorphic type and almost periodic type functions in abstract spaces. Springer-Verlag, New York, 2013. | MR

[13] Dimbour, W., Manou-Ab, S.M.: Asymptotically $\omega $-periodic functions in the Stepanov sense and its application for an advanced differential equation with piecewise constant argument in a Banach space. Mediterranean J. Math. 15 (1) (2018), 18 pp., | DOI | MR

[14] Fink, A.M.: Almost periodic differential equations. Springer-Verlag, Berlin, 1974. | MR

[15] Friedman, A.: Partial differential equations of parabolic type. Prentice Hall, Englewood Cliffs, NJ, 1964, xiv+347 pp. | MR

[16] Garcia, S.R.: Remembering Donald Sarason (1933-2017). Notices Amer. Math. Soc. 65 (2018), 195–200. | MR

[17] Haraux, A., Souplet, P.: An example of uniformly recurrent function which is not almost periodic. J. Fourier Anal. Appl. 10 (2004), 217–220. | DOI | MR

[18] Henríquez, H.R., Pierri, M., Táboas, P.: On S-asymptotically $\omega $-periodic functions on Banach spaces and applications. -asymptotically $\omega $-periodic functions on Banach spaces and applications, J. Math. Appl. Anal. 343 (2008), 1119–1130. | DOI | MR

[19] Khalladi, M.T., Kostić, M., Pinto, M., Rahmani, A., Velinov, D.: Generalized $c$-almost periodic functions and applications. Bull. Int. Math. Virtual Inst. 11 (2021), 283–293. | MR

[20] Khalladi, M.T., Kostić, M., Rahmani, A., Pinto, M., Velinov, D.: $c$-almost periodic type functions and applications. Nonauton. Dyn. Syst. 7 (2020), 176–193. | DOI | MR

[21] Kostić, M.: Multi-dimensional $c$-almost periodic type functions and applications. Electron. J. Differential Equations, in press, aXiv:2012.15735. | MR

[22] Kostić, M.: Generalized semigroups and cosine functions. Mathematical Institute SANU, Belgrade, 2011. | MR

[23] Kostić, M.: Almost periodic and almost automorphic type solutions to integro-differential equations. W. de Gruyter, Berlin, 2019. | MR

[24] Kostić, M.: Generalized $c$-almost periodic type functions in ${\mathbb{R}}^{n}$. Arch. Math. (Brno) 57 (2021), 221–253. | DOI | MR

[25] Kostić, M.: Multi-dimensional $(\omega , c)$-periodic type functions and applications. Nonauton. Dyn. Syst. 8 (2021), 136–151. | DOI | MR

[26] Kostić, M.: Quasi-asymptotically almost periodic functions and applications. Bull. Braz. Math. Soc. (N.S.) 52 (2021), 183–212. | DOI | MR

[27] Kostić, M.: Almost periodic functions and densities. Evol. Equ. Control Theory 11 (2) (2022), 457–486. | DOI | MR

[28] Kostić, M.: Selected topics in almost periodicity. W. de Gruyter, Berlin, 2022.

[29] Kovanko, A.S.: Sur la compacié des systémes de fonctions presque-périodiques généralisées de H. Wey. C.R. (Doklady) Ac. Sc. URSS 43 (1944), 275–276. | MR

[30] Levitan, M.: Almost periodic functions. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1953, 396 pp. (in Russian). | MR

[31] Maulén, C., Castillo, S., Kostić, M., Pinto, M.: Remotely almost periodic solutions of ordinary differential equations. J. Math. 2021 (2021), 9 pp., Article ID 9985454, 9 pp., | DOI | MR

[32] N’Guérékata, G.M.: Almost automorphic and almost periodic functions in abstract spaces. Kluwer Acad. Publ. Dordrecht, 2001. | MR

[33] Oueama-Guengai, E.R., N’Guérékata, G.M.: On $S$-asymptotically $\omega $-periodic and Bloch periodic mild solutions to some fractional differential equations in abstract spaces. Math. Methods Appl. Sci. 41 (2018), 9116–9122. | DOI | MR

[34] Pankov, A.A.: Bounded and almost periodic solutions of nonlinear operator differential equations. Kluwer Acad. Publ., Dordrecht, 1990. | MR

[35] Rabinovich, V.S., Roch, S.: The essential spectrum of Schrödinger operators on lattices. J. Phys. A 39 (2006), 8377–8394. | DOI | MR

[36] Sarason, D.: Toeplitz operators with piecewise quasicontinuous symbols. Indiana Univ. Math. J. 26 (1977), 817–838. | DOI | MR

[37] Sarason, D.: Remotely almost periodic functions. Contemp. Math. 32 (1984), 237–242. | DOI | MR

[38] Sarason, D.: The Banach algebra of slowly oscillating functions. Houston J. Math. 33 (4) (2007), 1161–1182. | MR

[39] Xie, R., Zhang, C.: Space of $\omega $-periodic limit functions and its applications to an abstract Cauchy problem. J. Function Spaces 2015 (2015), 10 pp., Article ID 953540, | DOI | MR

[40] Yang, F., Zhang, C.: Slowly oscillating solutions of a parabolic inverse problem: boundary value problems. Bound. Value Probl. 2010 (2010), 12 pp., Article ID 471491, doi:10.1155/2010/471491. | DOI | MR

[41] Yang, F., Zhang, C.: Remotely almost periodic solutions to parabolic inverse problems. Taiwanese J. Math. 15 (2011), 43–57. | DOI | MR

[42] Zaidman, S.: Almost-periodic functions in abstract spaces. Pitman Research Notes in Math., vol. 126, Pitman, Boston, 1985. | MR

[43] Zhang, C., Guo, Y.: Slowly oscillating solutions for differential equations with strictly monotone operator. J. Inequal. Appl. 2007 (2007), 9 pp., Article ID 60239, doi:10.1155/2007/60239. | DOI | MR

[44] Zhang, C., Jiang, L.: Remotely almost periodic solutions of parabolic inverse problems. Nonlinear Anal. 65 (2006), 1613–1623. | DOI | MR

[45] Zhang, C., Jiang, L.: Remotely almost periodic solutions to systems of differential equations with piecewise constant argument. Appl. Math. Lett. 21 (2008), 761–768. | DOI | MR

[46] Zhang, S., Piao, D.: Time remotely almost periodic viscosity solutions of Hamilton-Jacobi equations. ISRN Math. Anal. 2011 (2011), 13 pp., Article ID 415358, doi:10.5402/2011/415358. | DOI | MR

Cité par Sources :