Keywords: Euclidean sphere; closed hypersurfaces; $(r+1)$-th mean curvature; strong $r$-stability; geodesic spheres; upper (lower) domain enclosed by a geodesic sphere
@article{10_5817_AM2022_1_49,
author = {Vel\'asquez, Marco Antonio L\'azaro},
title = {A half-space type property in the {Euclidean} sphere},
journal = {Archivum mathematicum},
pages = {49--63},
year = {2022},
volume = {58},
number = {1},
doi = {10.5817/AM2022-1-49},
mrnumber = {4412967},
zbl = {07511507},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2022-1-49/}
}
Velásquez, Marco Antonio Lázaro. A half-space type property in the Euclidean sphere. Archivum mathematicum, Tome 58 (2022) no. 1, pp. 49-63. doi: 10.5817/AM2022-1-49
[1] Alencar, H., do Carmo, M., Colares, A.G.: Stable hypersurfaces with constant scalar curvature. Math. Z. 213 (1993), 117–131. | DOI | Zbl
[2] Alías, L.J., Barros, A., Brasil Jr., A.: A spectral characterization of the $H(r)$-torus by the first stability eigenvalue. Proc. Amer. Math. Soc. 133 (2005), 875–884. | DOI | MR
[3] Alías, L.J., Brasil Jr., A., Perdomo, O.: On the stability index of hypersurfaceswith constant mean curvature in spheres. Proc. Amer. Math. Soc. 135 (2007), 3685–3693. | DOI | MR
[4] Alías, L.J., Brasil Jr., A., Sousa Jr., L.: A characterization of Clifford tori with constant scalar curvatrue one by the first stability eigenvalue. Bull. Braz. Math. Soc. 35 (2004), 165–175. | DOI | MR
[5] Aquino, C.P., de Lima, H.: On the rigidity of constant mean curvature complete vertical graphs in warped products. Differential Geom. Appl. 29 (2011), 590–596. | DOI | MR
[6] Aquino, C.P., de Lima, H.F., dos Santos, Fábio R., Velásquez, Marco A.L.: On the first stability eigenvalue of hypersurfaces in the Euclidean and hyperbolic spaces. Quaest. Math. 40 (2017), 605–616. | DOI | MR
[7] Barbosa, J.L.M., Colares, A.G.: Stability of hypersurfaces with constant $r$-mean curvature. Ann. Global Anal. Geom. 15 (1997), 277–297. | DOI | Zbl
[8] Barbosa, J.L.M., do Carmo, M.: Stability of hypersurfaces with constant mean curvature. Math. Z. 185 (1984), 339–353. | DOI | Zbl
[9] Barbosa, J.L.M., do Carmo, M., Eschenburg, J.: Stability of hypersurfaces with constant mean curvature in Riemannian manifolds. Math. Z. 197 (1988), 1123–138.
[10] Barros, A., Sousa, P.: Compact graphs over a sphere of constant second order mean curvature. Proc. Amer. Math. Soc. 137 (2009), 3105–3114. | DOI | MR | Zbl
[11] Chavel, I.: Eigenvalues in Riemannian Geometry. Academic Press, Inc., 1984.
[12] Cheng, Q.: First eigenvalue of a Jacobi operator of hypersurfaces with a constant scalar curvature. Proc. Amer. Math. Soc. 136 (2008), 3309–3318. | DOI | MR
[13] Cheng, S.Y., Yau, S.T.: Hypersurfaces with constant scalar curvature. Math. Ann. 225 (1977), 195–204. | DOI | Zbl
[14] de Lima, H.F., Velásquez, Marco A.L.: A new characterization of $r$-stable hypersurfaces in space forms. Arch. Math. (Brno) 47 (2011), 119–131. | MR
[15] Montiel, S.: Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds. Indiana Univ. Math. J. 48 (1999), 711–748. | DOI
[16] Reilly, R.C.: Variational properties of functions of the mean curvatures for hypersurfaces in space forms. J. Differential Geom. 8 (1973), 465–477. | DOI | Zbl
Cité par Sources :