A half-space type property in the Euclidean sphere
Archivum mathematicum, Tome 58 (2022) no. 1, pp. 49-63 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the notion of strong $r$-stability for the context of closed hypersurfaces $\Sigma ^n$ ($n\ge 3$) with constant $(r+1)$-th mean curvature $H_{r+1}$ immersed into the Euclidean sphere $\mathbb{S}^{n+1}$, where $r\in \lbrace 1,\ldots ,n-2\rbrace $. In this setting, under a suitable restriction on the $r$-th mean curvature $H_r$, we establish that there are no $r$-strongly stable closed hypersurfaces immersed in a certain region of $\mathbb{S}^{n+1}$, a region that is determined by a totally umbilical sphere of $\mathbb{S}^{n+1}$. We also provide a rigidity result for such hypersurfaces.
We study the notion of strong $r$-stability for the context of closed hypersurfaces $\Sigma ^n$ ($n\ge 3$) with constant $(r+1)$-th mean curvature $H_{r+1}$ immersed into the Euclidean sphere $\mathbb{S}^{n+1}$, where $r\in \lbrace 1,\ldots ,n-2\rbrace $. In this setting, under a suitable restriction on the $r$-th mean curvature $H_r$, we establish that there are no $r$-strongly stable closed hypersurfaces immersed in a certain region of $\mathbb{S}^{n+1}$, a region that is determined by a totally umbilical sphere of $\mathbb{S}^{n+1}$. We also provide a rigidity result for such hypersurfaces.
DOI : 10.5817/AM2022-1-49
Classification : 53C21, 53C42
Keywords: Euclidean sphere; closed hypersurfaces; $(r+1)$-th mean curvature; strong $r$-stability; geodesic spheres; upper (lower) domain enclosed by a geodesic sphere
@article{10_5817_AM2022_1_49,
     author = {Vel\'asquez, Marco Antonio L\'azaro},
     title = {A half-space type property in the {Euclidean} sphere},
     journal = {Archivum mathematicum},
     pages = {49--63},
     year = {2022},
     volume = {58},
     number = {1},
     doi = {10.5817/AM2022-1-49},
     mrnumber = {4412967},
     zbl = {07511507},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2022-1-49/}
}
TY  - JOUR
AU  - Velásquez, Marco Antonio Lázaro
TI  - A half-space type property in the Euclidean sphere
JO  - Archivum mathematicum
PY  - 2022
SP  - 49
EP  - 63
VL  - 58
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2022-1-49/
DO  - 10.5817/AM2022-1-49
LA  - en
ID  - 10_5817_AM2022_1_49
ER  - 
%0 Journal Article
%A Velásquez, Marco Antonio Lázaro
%T A half-space type property in the Euclidean sphere
%J Archivum mathematicum
%D 2022
%P 49-63
%V 58
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2022-1-49/
%R 10.5817/AM2022-1-49
%G en
%F 10_5817_AM2022_1_49
Velásquez, Marco Antonio Lázaro. A half-space type property in the Euclidean sphere. Archivum mathematicum, Tome 58 (2022) no. 1, pp. 49-63. doi: 10.5817/AM2022-1-49

[1] Alencar, H., do Carmo, M., Colares, A.G.: Stable hypersurfaces with constant scalar curvature. Math. Z. 213 (1993), 117–131. | DOI | Zbl

[2] Alías, L.J., Barros, A., Brasil Jr., A.: A spectral characterization of the $H(r)$-torus by the first stability eigenvalue. Proc. Amer. Math. Soc. 133 (2005), 875–884. | DOI | MR

[3] Alías, L.J., Brasil Jr., A., Perdomo, O.: On the stability index of hypersurfaceswith constant mean curvature in spheres. Proc. Amer. Math. Soc. 135 (2007), 3685–3693. | DOI | MR

[4] Alías, L.J., Brasil Jr., A., Sousa Jr., L.: A characterization of Clifford tori with constant scalar curvatrue one by the first stability eigenvalue. Bull. Braz. Math. Soc. 35 (2004), 165–175. | DOI | MR

[5] Aquino, C.P., de Lima, H.: On the rigidity of constant mean curvature complete vertical graphs in warped products. Differential Geom. Appl. 29 (2011), 590–596. | DOI | MR

[6] Aquino, C.P., de Lima, H.F., dos Santos, Fábio R., Velásquez, Marco A.L.: On the first stability eigenvalue of hypersurfaces in the Euclidean and hyperbolic spaces. Quaest. Math. 40 (2017), 605–616. | DOI | MR

[7] Barbosa, J.L.M., Colares, A.G.: Stability of hypersurfaces with constant $r$-mean curvature. Ann. Global Anal. Geom. 15 (1997), 277–297. | DOI | Zbl

[8] Barbosa, J.L.M., do Carmo, M.: Stability of hypersurfaces with constant mean curvature. Math. Z. 185 (1984), 339–353. | DOI | Zbl

[9] Barbosa, J.L.M., do Carmo, M., Eschenburg, J.: Stability of hypersurfaces with constant mean curvature in Riemannian manifolds. Math. Z. 197 (1988), 1123–138.

[10] Barros, A., Sousa, P.: Compact graphs over a sphere of constant second order mean curvature. Proc. Amer. Math. Soc. 137 (2009), 3105–3114. | DOI | MR | Zbl

[11] Chavel, I.: Eigenvalues in Riemannian Geometry. Academic Press, Inc., 1984.

[12] Cheng, Q.: First eigenvalue of a Jacobi operator of hypersurfaces with a constant scalar curvature. Proc. Amer. Math. Soc. 136 (2008), 3309–3318. | DOI | MR

[13] Cheng, S.Y., Yau, S.T.: Hypersurfaces with constant scalar curvature. Math. Ann. 225 (1977), 195–204. | DOI | Zbl

[14] de Lima, H.F., Velásquez, Marco A.L.: A new characterization of $r$-stable hypersurfaces in space forms. Arch. Math. (Brno) 47 (2011), 119–131. | MR

[15] Montiel, S.: Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds. Indiana Univ. Math. J. 48 (1999), 711–748. | DOI

[16] Reilly, R.C.: Variational properties of functions of the mean curvatures for hypersurfaces in space forms. J. Differential Geom. 8 (1973), 465–477. | DOI | Zbl

Cité par Sources :