Keywords: tangency set; distributions; superdensity; integral manifold; Frobenius theorem
@article{10_5817_AM2021_4_195,
author = {Delladio, Silvano},
title = {Involutivity degree of a distribution at superdensity points of its tangencies},
journal = {Archivum mathematicum},
pages = {195--219},
year = {2021},
volume = {57},
number = {4},
doi = {10.5817/AM2021-4-195},
mrnumber = {4346111},
zbl = {07442412},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2021-4-195/}
}
TY - JOUR AU - Delladio, Silvano TI - Involutivity degree of a distribution at superdensity points of its tangencies JO - Archivum mathematicum PY - 2021 SP - 195 EP - 219 VL - 57 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2021-4-195/ DO - 10.5817/AM2021-4-195 LA - en ID - 10_5817_AM2021_4_195 ER -
Delladio, Silvano. Involutivity degree of a distribution at superdensity points of its tangencies. Archivum mathematicum, Tome 57 (2021) no. 4, pp. 195-219. doi: 10.5817/AM2021-4-195
[1] Balogh, Z.M.: Size of characteristic sets and functions with prescribed gradient. J. Reine Angew. Math. 564 (2003), 63–83. | MR
[2] Balogh, Z.M., Pintea, C., Rohner, H.: Size of tangencies to non-involutive distributions. Indiana Univ. Math. J. 60 (6) (2011), 2061–2092. | DOI | MR
[3] Chavel, I.: Riemannian Geometry: A Modern Introduction. Cambridge Tracts in Mathematics, vol. 108, Cambridge University Press, 1995.
[4] Chern, S.S., Chen, W.H., Lam, K.S.: Lectures on differential geometry. Series On University Mathematics, vol. 1, World Scientific, 1999.
[5] Delladio, S.: A note on a generalization of the Schwarz theorem about the equality of mixed partial derivatives. Math. Nachr. 290 (11–12) (2017), 1630–1636, DOI: 10.1002/mana.201600195. | DOI | MR
[6] Delladio, S.: Structure of tangencies to distributions via the implicit function theorem. Rev. Mat. Iberoam. 34 (3) (2018), 1387–1400. | DOI | MR
[7] Delladio, S.: Structure of prescribed gradient domains for non-integrable vector fields. Ann. Mat. Pura Appl. 198 (3) (2019), 685–691, DOI: 10.1007/s10231-018-0793-1. | DOI | MR
[8] Delladio, S.: The tangency of a $C^1$ smooth submanifold with respect to a non-involutive $C^1$ distribution has no superdensity points. Indiana Univ. Math. J. 68 (2) (2019), 393–412. | DOI | MR
[9] Delladio, S.: Good behaviour of Lie bracket at a superdensity point of the tangency set of a submanifold with respect to a rank $2$ distribution. Anal. Math. 47 (1) (2021), 67–80. | DOI | MR
[10] Derridj, M.: Sur un théorème de traces. Ann. Inst. Fourier (Grenoble) 22 (2) (1972), 73–83. | DOI
[11] Federer, H.: Geometric Measure Theory. Springer-Verlag, 1969. | Zbl
[12] Narasimhan, R.: Analysis on real and complex manifolds. North-Holland Math. Library, North-Holland, 1985.
Cité par Sources :