The Lie groupoid analogue of a symplectic Lie group
Archivum mathematicum, Tome 57 (2021) no. 2, pp. 61-81 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A symplectic Lie group is a Lie group with a left-invariant symplectic form. Its Lie algebra structure is that of a quasi-Frobenius Lie algebra. In this note, we identify the groupoid analogue of a symplectic Lie group. We call the aforementioned structure a $t$-symplectic Lie groupoid; the “$t$" is motivated by the fact that each target fiber of a $t$-symplectic Lie groupoid is a symplectic manifold. For a Lie groupoid $\mathcal{G}\rightrightarrows M$, we show that there is a one-to-one correspondence between quasi-Frobenius Lie algebroid structures on $A\mathcal{G}$ (the associated Lie algebroid) and $t$-symplectic Lie groupoid structures on $\mathcal{G}\rightrightarrows M$. In addition, we also introduce the notion of a symplectic Lie group bundle (SLGB) which is a special case of both a $t$-symplectic Lie groupoid and a Lie group bundle. The basic properties of SLGBs are explored.
A symplectic Lie group is a Lie group with a left-invariant symplectic form. Its Lie algebra structure is that of a quasi-Frobenius Lie algebra. In this note, we identify the groupoid analogue of a symplectic Lie group. We call the aforementioned structure a $t$-symplectic Lie groupoid; the “$t$" is motivated by the fact that each target fiber of a $t$-symplectic Lie groupoid is a symplectic manifold. For a Lie groupoid $\mathcal{G}\rightrightarrows M$, we show that there is a one-to-one correspondence between quasi-Frobenius Lie algebroid structures on $A\mathcal{G}$ (the associated Lie algebroid) and $t$-symplectic Lie groupoid structures on $\mathcal{G}\rightrightarrows M$. In addition, we also introduce the notion of a symplectic Lie group bundle (SLGB) which is a special case of both a $t$-symplectic Lie groupoid and a Lie group bundle. The basic properties of SLGBs are explored.
DOI : 10.5817/AM2021-2-61
Classification : 22A22, 53D05
Keywords: symplectic Lie groups; Lie groupoids; symplectic Lie algebroids
@article{10_5817_AM2021_2_61,
     author = {Pham, David N.},
     title = {The {Lie} groupoid analogue of a symplectic {Lie} group},
     journal = {Archivum mathematicum},
     pages = {61--81},
     year = {2021},
     volume = {57},
     number = {2},
     doi = {10.5817/AM2021-2-61},
     mrnumber = {4306169},
     zbl = {07361066},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2021-2-61/}
}
TY  - JOUR
AU  - Pham, David N.
TI  - The Lie groupoid analogue of a symplectic Lie group
JO  - Archivum mathematicum
PY  - 2021
SP  - 61
EP  - 81
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2021-2-61/
DO  - 10.5817/AM2021-2-61
LA  - en
ID  - 10_5817_AM2021_2_61
ER  - 
%0 Journal Article
%A Pham, David N.
%T The Lie groupoid analogue of a symplectic Lie group
%J Archivum mathematicum
%D 2021
%P 61-81
%V 57
%N 2
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2021-2-61/
%R 10.5817/AM2021-2-61
%G en
%F 10_5817_AM2021_2_61
Pham, David N. The Lie groupoid analogue of a symplectic Lie group. Archivum mathematicum, Tome 57 (2021) no. 2, pp. 61-81. doi: 10.5817/AM2021-2-61

[1] Baues, O., Corté, V.: Symplectic Lie groups, I – III. arXiv:1307.1629 [math.DG]. | MR

[2] Bott, R., Tu, L.: Differential Forms in Algebraic Topology. Springer, 1982. | MR | Zbl

[3] Chari, V., Pressley, A.: Quantum Groups. Cambridge University Press, 1994.

[4] Chevalley, C.: Theory of Lie Groups. Princeton University Press, 1946. | MR

[5] Chu, B.: Symplectic homogeneous spaces. Trans. Amer. Math. Soc. 197 (1974), 145–159. | DOI | MR

[6] de Leon, M., Marrero, J., Martínez, E.: Lagrangian submanifolds and dynamics on Lie algebroids. J. Phys. A: Math. Gen. 38 (24) (2005), 241–308. | DOI | MR

[7] Dufour, J., Zung, N.: Poisson Structures and Their Normal Forms. Berkhäuser Verlag, 2005. | MR

[8] Kosmann-Schwarzbach, Y., Mackenzie, K.: Differential operators and actions of Lie algebroids. Quantization, Poisson brackets and beyond, vol. 315, Amer. Math. Soc., Providence, RI, 2002, pp. 213–233. | MR

[9] Lee, J.M.: Introduction to Smooth Manifolds. Springer Verlag, New York, 2003. | MR

[10] Mackenzie, K.: General Theory of Lie Groupoids and Lie Algebroids. London Mathematical Society Lecture Note Series, vol. 213, Cambridge University Press, 2005. | MR | Zbl

[11] Macknezie, K.: Lie Groupoids and Lie Algebroids in Differential Geometry. London Mathematical Society Lecture Note Series, vol. 124, Cambridge University Press, 1987. | MR

[12] Marle, C.M.: Differential calculus on a Lie algebroid and Poisson manifolds. arXiv:0804.2451v2 [math.DG], June 200. | MR

[13] Marle, C.M.: Calculus on Lie algebroids, Lie groupoids and Poisson manifolds. Dissertationes Math., vol. 457, Polish Academy of Sciences, 2008. | DOI | MR

[14] Nest, R., Tsygan, B.: Deformations of symplectic Lie algebroids, deformations of holomorphic symplectic structures, and index theorems. Asian J. Math. 5 (2001), 599–635. | DOI | MR

[15] Warner, F.: Foundations of differentiable manifolds and Lie groups. Springer Verlag, 1983. | MR

[16] Weinstein, A.: Symplectic groupoids and Poisson manifolds. Bull. Amer. Math. Soc. 16 (1) (1987), 101–104. | DOI | MR

Cité par Sources :