Keywords: modular operads; connected sum; Batalin-Vilkovisky algebra; homological perturbation lemma
@article{10_5817_AM2020_5_287,
author = {Peksov\'a, Lada},
title = {Modular operads with connected sum and {Barannikov{\textquoteright}s} theory},
journal = {Archivum mathematicum},
pages = {287--300},
year = {2020},
volume = {56},
number = {5},
doi = {10.5817/AM2020-5-287},
mrnumber = {4188743},
zbl = {07285966},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-5-287/}
}
Peksová, Lada. Modular operads with connected sum and Barannikov’s theory. Archivum mathematicum, Tome 56 (2020) no. 5, pp. 287-300. doi: 10.5817/AM2020-5-287
[1] Barannikov, S.: Modular operads and Batalin-Vilkovisky geometry. Int. Math. Res. Not. IMRN 19 (2007), 31 pp., Art. ID rnm075. | MR
[2] Chuang, J., Lazarev, A.: Abstract Hodge decomposition and minimal models for cyclic algebras. Lett. Math. Phys. 89 (1) (2009), 33–49. | DOI | MR
[3] Doubek, M., Jurčo, B., Münster, K.: Modular operads and the quantum open-closed homotopy algebra. J. High Energy Phys. 158 (12) (2015), 54 pp., Article ID 158. | MR
[4] Doubek, M., Jurčo, B., Peksová, L., Pulmann, J.: Quantum homotopy algebras. in preparation.
[5] Doubek, M., Jurčo, B., Pulmann, J.: Quantum $L_\infty $ algebras and the homological perturbation lemma. Comm. Math. Phys. 367 (1) (2019), 215–240. | DOI | MR
[6] Eilenberg, S., MacLane, S.: On the groups $H(\Pi , n)$. I. Ann. of Math. (2) 58 (1) (1953), 55–106. | MR
[7] Markl, M.: Loop homotopy algebras in closed string field theory. Comm. Math. Phys. 221 (2) (2001), 367–384. | DOI | MR
[8] Schwarz, A.: Geometry of Batalin-Vilkovisky quantization. Comm. Math. Phys. 155 (2) (1993), 249–260. | DOI | MR | Zbl
[9] Zwiebach, B.: Oriented open-closed string theory revisited. Ann. Physics 267 (2) (1998), 193–248. | DOI | MR
Cité par Sources :