Modular operads with connected sum and Barannikov’s theory
Archivum mathematicum, Tome 56 (2020) no. 5, pp. 287-300 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We introduce the connected sum for modular operads. This gives us a graded commutative associative product, and together with the BV bracket and the BV Laplacian obtained from the operadic composition and self-composition, we construct the full Batalin-Vilkovisky algebra. The BV Laplacian is then used as a perturbation of the special deformation retract of formal functions to construct a minimal model and compute an effective action.
We introduce the connected sum for modular operads. This gives us a graded commutative associative product, and together with the BV bracket and the BV Laplacian obtained from the operadic composition and self-composition, we construct the full Batalin-Vilkovisky algebra. The BV Laplacian is then used as a perturbation of the special deformation retract of formal functions to construct a minimal model and compute an effective action.
DOI : 10.5817/AM2020-5-287
Classification : 18D50, 81T99
Keywords: modular operads; connected sum; Batalin-Vilkovisky algebra; homological perturbation lemma
@article{10_5817_AM2020_5_287,
     author = {Peksov\'a, Lada},
     title = {Modular operads with connected sum and {Barannikov{\textquoteright}s} theory},
     journal = {Archivum mathematicum},
     pages = {287--300},
     year = {2020},
     volume = {56},
     number = {5},
     doi = {10.5817/AM2020-5-287},
     mrnumber = {4188743},
     zbl = {07285966},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-5-287/}
}
TY  - JOUR
AU  - Peksová, Lada
TI  - Modular operads with connected sum and Barannikov’s theory
JO  - Archivum mathematicum
PY  - 2020
SP  - 287
EP  - 300
VL  - 56
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2020-5-287/
DO  - 10.5817/AM2020-5-287
LA  - en
ID  - 10_5817_AM2020_5_287
ER  - 
%0 Journal Article
%A Peksová, Lada
%T Modular operads with connected sum and Barannikov’s theory
%J Archivum mathematicum
%D 2020
%P 287-300
%V 56
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2020-5-287/
%R 10.5817/AM2020-5-287
%G en
%F 10_5817_AM2020_5_287
Peksová, Lada. Modular operads with connected sum and Barannikov’s theory. Archivum mathematicum, Tome 56 (2020) no. 5, pp. 287-300. doi: 10.5817/AM2020-5-287

[1] Barannikov, S.: Modular operads and Batalin-Vilkovisky geometry. Int. Math. Res. Not. IMRN 19 (2007), 31 pp., Art. ID rnm075. | MR

[2] Chuang, J., Lazarev, A.: Abstract Hodge decomposition and minimal models for cyclic algebras. Lett. Math. Phys. 89 (1) (2009), 33–49. | DOI | MR

[3] Doubek, M., Jurčo, B., Münster, K.: Modular operads and the quantum open-closed homotopy algebra. J. High Energy Phys. 158 (12) (2015), 54 pp., Article ID 158. | MR

[4] Doubek, M., Jurčo, B., Peksová, L., Pulmann, J.: Quantum homotopy algebras. in preparation.

[5] Doubek, M., Jurčo, B., Pulmann, J.: Quantum $L_\infty $ algebras and the homological perturbation lemma. Comm. Math. Phys. 367 (1) (2019), 215–240. | DOI | MR

[6] Eilenberg, S., MacLane, S.: On the groups $H(\Pi , n)$. I. Ann. of Math. (2) 58 (1) (1953), 55–106. | MR

[7] Markl, M.: Loop homotopy algebras in closed string field theory. Comm. Math. Phys. 221 (2) (2001), 367–384. | DOI | MR

[8] Schwarz, A.: Geometry of Batalin-Vilkovisky quantization. Comm. Math. Phys. 155 (2) (1993), 249–260. | DOI | MR | Zbl

[9] Zwiebach, B.: Oriented open-closed string theory revisited. Ann. Physics 267 (2) (1998), 193–248. | DOI | MR

Cité par Sources :