Modular operads with connected sum and Barannikov’s theory
Archivum mathematicum, Tome 56 (2020) no. 5, pp. 287-300
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We introduce the connected sum for modular operads. This gives us a graded commutative associative product, and together with the BV bracket and the BV Laplacian obtained from the operadic composition and self-composition, we construct the full Batalin-Vilkovisky algebra. The BV Laplacian is then used as a perturbation of the special deformation retract of formal functions to construct a minimal model and compute an effective action.
DOI :
10.5817/AM2020-5-287
Classification :
18D50, 81T99
Keywords: modular operads; connected sum; Batalin-Vilkovisky algebra; homological perturbation lemma
Keywords: modular operads; connected sum; Batalin-Vilkovisky algebra; homological perturbation lemma
@article{10_5817_AM2020_5_287,
author = {Peksov\'a, Lada},
title = {Modular operads with connected sum and {Barannikov{\textquoteright}s} theory},
journal = {Archivum mathematicum},
pages = {287--300},
publisher = {mathdoc},
volume = {56},
number = {5},
year = {2020},
doi = {10.5817/AM2020-5-287},
mrnumber = {4188743},
zbl = {07285966},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-5-287/}
}
TY - JOUR AU - Peksová, Lada TI - Modular operads with connected sum and Barannikov’s theory JO - Archivum mathematicum PY - 2020 SP - 287 EP - 300 VL - 56 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2020-5-287/ DO - 10.5817/AM2020-5-287 LA - en ID - 10_5817_AM2020_5_287 ER -
Peksová, Lada. Modular operads with connected sum and Barannikov’s theory. Archivum mathematicum, Tome 56 (2020) no. 5, pp. 287-300. doi: 10.5817/AM2020-5-287
Cité par Sources :