Norm inequalities for the difference between weighted and integral means of operator differentiable functions
Archivum mathematicum, Tome 56 (2020) no. 3, pp. 183-197.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $f$ be a continuous function on $I$ and $A$, $B\in \mathcal{SA}_{I}\left( H\right) $, the convex set of selfadjoint operators with spectra in $I$. If $A\neq B$ and $f$, as an operator function, is Gateaux differentiable on \begin{equation*} [ A,B] :=\left\{ ( 1-t) A+tB\mid t\in \left[ 0,1\right] \right\}\,, \end{equation*} while $p\colon \left[ 0,1\right] \rightarrow \mathbb{R}$ is Lebesgue integrable, then we have the inequalities \begin{align*} \Big\Vert \int_{0}^{1}p\left( \tau \right) f\left( \left( 1-\tau \right) A+\tau B\right) d\tau -\int_{0}^{1}p\left( \tau \right) \,d\tau \int_{0}^{1}f\left( \left( 1-\tau \right) A+\tau B\right)\, d\tau \Big\Vert \\ \leq \int_{0}^{1}\tau ( 1-\tau) \Big\vert \frac{\int_{\tau }^{1}p\left( s\right)\, ds}{1-\tau }-\frac{\int_{0}^{\tau }p\left( s\right)\, ds}{\tau }\Big\vert \left\Vert \nabla f_{\left( 1-\tau \right) A+\tau B}\left( B-A\right) \right\Vert \,d\tau \\ \leq \frac{1}{4}\int_{0}^{1}\Big\vert \frac{\int_{\tau }^{1}p\left( s\right)\, ds}{1-\tau }-\frac{\int_{0}^{\tau }p\left( s\right)\, ds}{\tau } \Big\vert \left\Vert \nabla f_{\left( 1-\tau \right) A+\tau B}\left( B-A\right) \right\Vert\, d\tau\,, \end{align*} where $\nabla f$ is the Gateaux derivative of $f$.
DOI : 10.5817/AM2020-3-183
Classification : 47A63, 47A99
Keywords: operator Gâteaux differentiable functions; integral inequalities; Hermite-Hadamard inequality; Féjer’s inequalities; weighted integral means
@article{10_5817_AM2020_3_183,
     author = {Dragomir, Silvestru Sever},
     title = {Norm inequalities for the difference between weighted and integral means of operator differentiable functions},
     journal = {Archivum mathematicum},
     pages = {183--197},
     publisher = {mathdoc},
     volume = {56},
     number = {3},
     year = {2020},
     doi = {10.5817/AM2020-3-183},
     mrnumber = {4156444},
     zbl = {07250678},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-183/}
}
TY  - JOUR
AU  - Dragomir, Silvestru Sever
TI  - Norm inequalities for the difference between weighted and integral means of operator differentiable functions
JO  - Archivum mathematicum
PY  - 2020
SP  - 183
EP  - 197
VL  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-183/
DO  - 10.5817/AM2020-3-183
LA  - en
ID  - 10_5817_AM2020_3_183
ER  - 
%0 Journal Article
%A Dragomir, Silvestru Sever
%T Norm inequalities for the difference between weighted and integral means of operator differentiable functions
%J Archivum mathematicum
%D 2020
%P 183-197
%V 56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-183/
%R 10.5817/AM2020-3-183
%G en
%F 10_5817_AM2020_3_183
Dragomir, Silvestru Sever. Norm inequalities for the difference between weighted and integral means of operator differentiable functions. Archivum mathematicum, Tome 56 (2020) no. 3, pp. 183-197. doi : 10.5817/AM2020-3-183. http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-183/

Cité par Sources :