Keywords: operator Gâteaux differentiable functions; integral inequalities; Hermite-Hadamard inequality; Féjer’s inequalities; weighted integral means
@article{10_5817_AM2020_3_183,
author = {Dragomir, Silvestru Sever},
title = {Norm inequalities for the difference between weighted and integral means of operator differentiable functions},
journal = {Archivum mathematicum},
pages = {183--197},
year = {2020},
volume = {56},
number = {3},
doi = {10.5817/AM2020-3-183},
mrnumber = {4156444},
zbl = {07250678},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-183/}
}
TY - JOUR AU - Dragomir, Silvestru Sever TI - Norm inequalities for the difference between weighted and integral means of operator differentiable functions JO - Archivum mathematicum PY - 2020 SP - 183 EP - 197 VL - 56 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-183/ DO - 10.5817/AM2020-3-183 LA - en ID - 10_5817_AM2020_3_183 ER -
%0 Journal Article %A Dragomir, Silvestru Sever %T Norm inequalities for the difference between weighted and integral means of operator differentiable functions %J Archivum mathematicum %D 2020 %P 183-197 %V 56 %N 3 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-183/ %R 10.5817/AM2020-3-183 %G en %F 10_5817_AM2020_3_183
Dragomir, Silvestru Sever. Norm inequalities for the difference between weighted and integral means of operator differentiable functions. Archivum mathematicum, Tome 56 (2020) no. 3, pp. 183-197. doi: 10.5817/AM2020-3-183
[1] Agarwal, R.P., Dragomir, S.S.: A survey of Jensen type inequalities for functions of selfadjoint operators in Hilbert spaces. Comput. Math. Appl. 59 (12) (2010), 3785–3812. | DOI | MR
[2] Bacak, V., Vildan, T., Türkmen, R.: Refinements of Hermite-Hadamard type inequalities for operator convex functions. J. Inequal. Appl. 2013 (262) (2013), 10 pp. | MR
[3] Darvish, V., Dragomir, S.S., Nazari, H.M., Taghavi, A.: Some inequalities associated with the Hermite-Hadamard inequalities for operator $h$-convex functions. Acta Comment. Univ. Tartu. Math. 21 (2) (2017), 287–297. | MR
[4] Dragomir, S.S.: Hermite-Hadamard’s type inequalities for operator convex functions. Appl. Math. Comput. 218 (3) (2011), 766–772. | MR
[5] Dragomir, S.S.: Operator Inequalities of the Jensen, Čebyšev and Grüss Type. Springer Briefs in Mathematics. Springer, New York, 2012. | MR
[6] Dragomir, S.S.: Bounds for the difference between weighted and integral means of operator convex function. RGMIA Res. Rep. Coll. 22 (2019), 14 pp., Art. 97, [Online s http://rgmia.org/papers/v22/v22a97.pdf]
[7] Dragomir, S.S.: Reverses of operator Féjer’s inequalities. RGMIA Res. Rep. Coll. 22 (2019), 14 pp., Art. 91, [Online http://rgmia.org/papers/v22/v22a91.pdf]
[8] Dragomir, S.S.: Some Hermite-Hadamard type inequalities for operator convex functions and positive maps. Spec. Matrices 7 (2019), 38–51, Preprint RGMIA Res. Rep. Coll. 19 (2016), Art. 80. [Online http://rgmia.org/papers/v19/v19a80.pdf] | DOI | MR
[9] Furuta, T., Mićić Hot, J., Pečarić, J., Seo, Y.: Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space. Element, Zagreb, 2005. | MR
[10] Ghazanfari, A.G.: The Hermite-Hadamard type inequalities for operator $s$-convex functions. J. Adv. Res. Pure Math. 6 (3) (2014), 52–61. | DOI | MR
[11] Ghazanfari, A.G.: Hermite-Hadamard type inequalities for functions whose derivatives are operator convex. Complex Anal. Oper. Theory 10 (8) (2016), 1695–1703. | DOI | MR
[12] Han, J., Shi, J.: Refinements of Hermite-Hadamard inequality for operator convex function. J. Nonlinear Sci. Appl. 10 (11) (2017), 6035–6041. | DOI | MR
[13] Li, B.: Refinements of Hermite-Hadamard’s type inequalities for operator convex functions. Int. J. Contemp. Math. Sci. 8 (9–12) (2013), 463–467. | DOI | MR
[14] Pedersen, G.K.: Operator differentiable functions. Publ. Res. Inst. Math. Sci. 36 (1) (2000), 139–157. | DOI | MR
[15] Taghavi, A., Darvish, V., Nazari, H.M., Dragomir, S.S.: Hermite-Hadamard type inequalities for operator geometrically convex functions. Monatsh. Math. 181 (1) (2016), 187–203. | DOI | MR
[16] Vivas Cortez, M., Hernández, J.E.H.: On some new generalized Hermite-Hadamard-Fejér inequalities for product of two operator $h$-convex functions. Appl. Math. Inf. Sci. 11 (4) (2017), 983–992. | DOI | MR
[17] Vivas Cortez, M., Hernández, J.E.H.: Refinements for Hermite-Hadamard type inequalities for operator $h$-convex function. Appl. Math. Inf. Sci. 11 (5) (2017), 1299–1307. | DOI | MR
[18] Vivas Cortez, M., Hernández, J.E.H., Azócar, L.A.: Some new generalized Jensen and Hermite-Hadamard inequalities for operator $h $-convex functions. Appl. Math. Inf. Sci. 11 (2) (2017), 383–392. | DOI | MR
[19] Wang, S.-H.: Hermite-Hadamard type inequalities for operator convex functions on the co-ordinates. J. Nonlinear Sci. Appl. 10 (3) (2017), 1116–1125. | DOI | MR
[20] Wang, S.-H.: New integral inequalities of Hermite-Hadamard type for operator m-convex and $(\alpha ,m)$-convex functions. J. Comput. Anal. Appl. 22 (4) (2017), 744–753. | MR
Cité par Sources :