Locally functionally countable subalgebra of $\mathcal{R}(L)$
Archivum mathematicum, Tome 56 (2020) no. 3, pp. 127-140
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $L_c(X)= \lbrace f \in C(X) \colon \overline{C_f}= X\rbrace $, where $C_f$ is the union of all open subsets $U \subseteq X$ such that $\vert f(U) \vert \le \aleph _0$. In this paper, we present a pointfree topology version of $L_c(X)$, named $\mathcal{R}_{\ell c}(L)$. We observe that $\mathcal{R}_{\ell c}(L)$ enjoys most of the important properties shared by $\mathcal{R}(L)$ and $\mathcal{R}_c(L)$, where $\mathcal{R}_c(L)$ is the pointfree version of all continuous functions of $C(X)$ with countable image. The interrelation between $\mathcal{R}(L)$, $\mathcal{R}_{\ell c}(L)$, and $\mathcal{R}_c(L)$ is examined. We show that $L_c(X) \cong \mathcal{R}_{\ell c}\big (\mathfrak{O}(X)\big )$ for any space $X$. Frames $L$ for which $\mathcal{R}_{\ell c}(L)=\mathcal{R}(L)$ are characterized.
DOI :
10.5817/AM2020-3-127
Classification :
06D22, 54C05, 54C30
Keywords: functionally countable subalgebra; locally functionally countable subalgebra; sublocale; frame
Keywords: functionally countable subalgebra; locally functionally countable subalgebra; sublocale; frame
@article{10_5817_AM2020_3_127,
author = {Elyasi, M. and Estaji, A.~A. and Robat Sarpoushi, M.},
title = {Locally functionally countable subalgebra of $\mathcal{R}(L)$},
journal = {Archivum mathematicum},
pages = {127--140},
publisher = {mathdoc},
volume = {56},
number = {3},
year = {2020},
doi = {10.5817/AM2020-3-127},
mrnumber = {4156440},
zbl = {07250674},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-127/}
}
TY - JOUR
AU - Elyasi, M.
AU - Estaji, A. A.
AU - Robat Sarpoushi, M.
TI - Locally functionally countable subalgebra of $\mathcal{R}(L)$
JO - Archivum mathematicum
PY - 2020
SP - 127
EP - 140
VL - 56
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-127/
DO - 10.5817/AM2020-3-127
LA - en
ID - 10_5817_AM2020_3_127
ER -
%0 Journal Article
%A Elyasi, M.
%A Estaji, A. A.
%A Robat Sarpoushi, M.
%T Locally functionally countable subalgebra of $\mathcal{R}(L)$
%J Archivum mathematicum
%D 2020
%P 127-140
%V 56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-127/
%R 10.5817/AM2020-3-127
%G en
%F 10_5817_AM2020_3_127
Elyasi, M.; Estaji, A. A.; Robat Sarpoushi, M. Locally functionally countable subalgebra of $\mathcal{R}(L)$. Archivum mathematicum, Tome 56 (2020) no. 3, pp. 127-140. doi: 10.5817/AM2020-3-127
Cité par Sources :