Locally functionally countable subalgebra of $\mathcal{R}(L)$
Archivum mathematicum, Tome 56 (2020) no. 3, pp. 127-140 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $L_c(X)= \lbrace f \in C(X) \colon \overline{C_f}= X\rbrace $, where $C_f$ is the union of all open subsets $U \subseteq X$ such that $\vert f(U) \vert \le \aleph _0$. In this paper, we present a pointfree topology version of $L_c(X)$, named $\mathcal{R}_{\ell c}(L)$. We observe that $\mathcal{R}_{\ell c}(L)$ enjoys most of the important properties shared by $\mathcal{R}(L)$ and $\mathcal{R}_c(L)$, where $\mathcal{R}_c(L)$ is the pointfree version of all continuous functions of $C(X)$ with countable image. The interrelation between $\mathcal{R}(L)$, $\mathcal{R}_{\ell c}(L)$, and $\mathcal{R}_c(L)$ is examined. We show that $L_c(X) \cong \mathcal{R}_{\ell c}\big (\mathfrak{O}(X)\big )$ for any space $X$. Frames $L$ for which $\mathcal{R}_{\ell c}(L)=\mathcal{R}(L)$ are characterized.
Let $L_c(X)= \lbrace f \in C(X) \colon \overline{C_f}= X\rbrace $, where $C_f$ is the union of all open subsets $U \subseteq X$ such that $\vert f(U) \vert \le \aleph _0$. In this paper, we present a pointfree topology version of $L_c(X)$, named $\mathcal{R}_{\ell c}(L)$. We observe that $\mathcal{R}_{\ell c}(L)$ enjoys most of the important properties shared by $\mathcal{R}(L)$ and $\mathcal{R}_c(L)$, where $\mathcal{R}_c(L)$ is the pointfree version of all continuous functions of $C(X)$ with countable image. The interrelation between $\mathcal{R}(L)$, $\mathcal{R}_{\ell c}(L)$, and $\mathcal{R}_c(L)$ is examined. We show that $L_c(X) \cong \mathcal{R}_{\ell c}\big (\mathfrak{O}(X)\big )$ for any space $X$. Frames $L$ for which $\mathcal{R}_{\ell c}(L)=\mathcal{R}(L)$ are characterized.
DOI : 10.5817/AM2020-3-127
Classification : 06D22, 54C05, 54C30
Keywords: functionally countable subalgebra; locally functionally countable subalgebra; sublocale; frame
@article{10_5817_AM2020_3_127,
     author = {Elyasi, M. and Estaji, A.~A. and Robat Sarpoushi, M.},
     title = {Locally functionally countable subalgebra  of $\mathcal{R}(L)$},
     journal = {Archivum mathematicum},
     pages = {127--140},
     year = {2020},
     volume = {56},
     number = {3},
     doi = {10.5817/AM2020-3-127},
     mrnumber = {4156440},
     zbl = {07250674},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-127/}
}
TY  - JOUR
AU  - Elyasi, M.
AU  - Estaji, A. A.
AU  - Robat Sarpoushi, M.
TI  - Locally functionally countable subalgebra  of $\mathcal{R}(L)$
JO  - Archivum mathematicum
PY  - 2020
SP  - 127
EP  - 140
VL  - 56
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-127/
DO  - 10.5817/AM2020-3-127
LA  - en
ID  - 10_5817_AM2020_3_127
ER  - 
%0 Journal Article
%A Elyasi, M.
%A Estaji, A. A.
%A Robat Sarpoushi, M.
%T Locally functionally countable subalgebra  of $\mathcal{R}(L)$
%J Archivum mathematicum
%D 2020
%P 127-140
%V 56
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-127/
%R 10.5817/AM2020-3-127
%G en
%F 10_5817_AM2020_3_127
Elyasi, M.; Estaji, A. A.; Robat Sarpoushi, M. Locally functionally countable subalgebra  of $\mathcal{R}(L)$. Archivum mathematicum, Tome 56 (2020) no. 3, pp. 127-140. doi: 10.5817/AM2020-3-127

[1] Azarpanah, F., Karamzadeh, O.A.S., Keshtkar, Z., Olfati, A.R.: On maximal ideals of $C_c(X)$ and the uniformity of its localizations. Rocky Mountain J. Math. 48 (2) (2018), 354–384, | DOI | MR

[2] Ball, R.N., Walters-Wayland, J.: $\text{C}$- and $\text{C}^*$- quotients in pointfree topology. Dissertationes Math. (Rozprawy Mat.) 412 (2002), 354–384. | MR

[3] Banaschewski, B.: The real numbers in pointfree topology. Textos de Mathemática (Séries B), Universidade de Coimbra, Departamento de Mathemática, Coimbra 12 (1997), 1–96. | MR | Zbl

[4] Bhattacharjee, P., Knox, M.L., Mcgovern, W.W.: The classical ring of quotients of $C_c(X)$. Appl. Gen. Topol. 15 (2) (2014), 147–154, | DOI | MR

[5] Dowker, C.H.: On Urysohn’s lemma. General Topology and its Relations to Modern Analysis, Proceedings of the second Prague topological symposium, 1966, Academia Publishing House of the Czechoslovak Academy of Sciences, Praha, 1967, pp. 111–114. | MR

[6] Estaji, A.A., Karimi Feizabadi, A., Robat Sarpoushi, M.: $z_c$-ideals and prime ideals in the ring $\mathcal{R}_c L$. Filomat 32 (19) (2018), 6741–6752, | DOI | MR

[7] Estaji, A.A., Karimi Feizabadi, A., Zarghani, M.: Zero elements and $z$-ideals in modified pointfree topology. Bull. Iranian Math. Soc. 43 (7) (2017), 2205–2226. | MR

[8] Estaji, A.A., Robat Sarpoushi, M.: On $CP$-frames. submitted.

[9] Estaji, A.A., Robat Sarpoushi, M., Elyasi, M.: Further thoughts on the ring $\mathcal{R}_c(L)$ in frames. Algebra Universalis 80 (4) (2019), 14, https: //doi.org/10.1007/s00012-019-0619-z 4. | DOI | MR

[10] Ghadermazi, M., Karamzadeh, O.A.S., Namdari, M.: On the functionally countable subalgebra of $C(X)$. Rend. Semin. Mat. Univ. Padova 129 (2013), 47–69, | DOI | MR

[11] Ghadermazi, M., Karamzadeh, O.A.S., Namdari, M.: $C(X)$ versus its functionally countable subalgebra. Bull. Iranian Math. Soc. 45 (2019), 173–187, | DOI | MR

[12] Gillman, L., Jerison, M.: Rings of Continuous Functions. Springer-Verlag, 1976. | MR | Zbl

[13] Johnstone, P.T.: Stone Spaces. Cambridge Univ. Press, Cambridge, 1982. | MR | Zbl

[14] Karamzadeh, O.A.S., Keshtkar, Z.: On $c$-realcompact spaces. Quaest. Math. 42 (8) (2018), 1135–1167, | DOI | MR

[15] Karamzadeh, O.A.S., Namdari, M., Soltanpour, S.: On the locally functionally countable subalgebra of $C(X)$. Appl. Gen. Topol. 16 (2015), 183–207, | DOI | MR

[16] Karimi Feizabadi, A., Estaji, A.A., Robat Sarpoushi, M.: Pointfree version of image of real-valued continuous functions. Categ. Gen. Algebr. Struct. Appl. 9 (1) (2018), 59–75. | MR

[17] Mehri, R., Mohamadian, R.: On the locally countable subalgebra of $C(X)$ whose local domain is cocountable. Hacet. J. Math. Stat. 46 (6) (2017), 1053–1068, | DOI | MR

[18] Namdari, M., Veisi, A.: Rings of quotients of the subalgebra of $C(X )$ consisting of functions with countable image. Int. Math. Forum 7 (12) (2012), 561–571. | MR

[19] Picado, J., Pultr, A.: Frames and Locales: Topology without Points. Frontiers in Mathematics, Birkhäuser/Springer, Basel AG, Basel, 2012. | MR

[20] Robat Sarpoushi, M.: Pointfree topology version of continuous functions with countable image. Hakim Sabzevari University, Sabzevar, Iran (2017), Phd. Thesis.

Cité par Sources :