Locally functionally countable subalgebra of $\mathcal{R}(L)$
Archivum mathematicum, Tome 56 (2020) no. 3, pp. 127-140.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $L_c(X)= \lbrace f \in C(X) \colon \overline{C_f}= X\rbrace $, where $C_f$ is the union of all open subsets $U \subseteq X$ such that $\vert f(U) \vert \le \aleph _0$. In this paper, we present a pointfree topology version of $L_c(X)$, named $\mathcal{R}_{\ell c}(L)$. We observe that $\mathcal{R}_{\ell c}(L)$ enjoys most of the important properties shared by $\mathcal{R}(L)$ and $\mathcal{R}_c(L)$, where $\mathcal{R}_c(L)$ is the pointfree version of all continuous functions of $C(X)$ with countable image. The interrelation between $\mathcal{R}(L)$, $\mathcal{R}_{\ell c}(L)$, and $\mathcal{R}_c(L)$ is examined. We show that $L_c(X) \cong \mathcal{R}_{\ell c}\big (\mathfrak{O}(X)\big )$ for any space $X$. Frames $L$ for which $\mathcal{R}_{\ell c}(L)=\mathcal{R}(L)$ are characterized.
DOI : 10.5817/AM2020-3-127
Classification : 06D22, 54C05, 54C30
Keywords: functionally countable subalgebra; locally functionally countable subalgebra; sublocale; frame
@article{10_5817_AM2020_3_127,
     author = {Elyasi, M. and Estaji, A.~A. and Robat Sarpoushi, M.},
     title = {Locally functionally countable subalgebra  of $\mathcal{R}(L)$},
     journal = {Archivum mathematicum},
     pages = {127--140},
     publisher = {mathdoc},
     volume = {56},
     number = {3},
     year = {2020},
     doi = {10.5817/AM2020-3-127},
     mrnumber = {4156440},
     zbl = {07250674},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-127/}
}
TY  - JOUR
AU  - Elyasi, M.
AU  - Estaji, A. A.
AU  - Robat Sarpoushi, M.
TI  - Locally functionally countable subalgebra  of $\mathcal{R}(L)$
JO  - Archivum mathematicum
PY  - 2020
SP  - 127
EP  - 140
VL  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-127/
DO  - 10.5817/AM2020-3-127
LA  - en
ID  - 10_5817_AM2020_3_127
ER  - 
%0 Journal Article
%A Elyasi, M.
%A Estaji, A. A.
%A Robat Sarpoushi, M.
%T Locally functionally countable subalgebra  of $\mathcal{R}(L)$
%J Archivum mathematicum
%D 2020
%P 127-140
%V 56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-127/
%R 10.5817/AM2020-3-127
%G en
%F 10_5817_AM2020_3_127
Elyasi, M.; Estaji, A. A.; Robat Sarpoushi, M. Locally functionally countable subalgebra  of $\mathcal{R}(L)$. Archivum mathematicum, Tome 56 (2020) no. 3, pp. 127-140. doi : 10.5817/AM2020-3-127. http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-127/

Cité par Sources :