Keywords: shape space; square root normal field
@article{10_5817_AM2020_2_107,
author = {Klassen, Eric and Michor, Peter W.},
title = {Closed surfaces with different shapes that are indistinguishable by the {SRNF}},
journal = {Archivum mathematicum},
pages = {107--114},
year = {2020},
volume = {56},
number = {2},
doi = {10.5817/AM2020-2-107},
mrnumber = {4115086},
zbl = {07217116},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-2-107/}
}
TY - JOUR AU - Klassen, Eric AU - Michor, Peter W. TI - Closed surfaces with different shapes that are indistinguishable by the SRNF JO - Archivum mathematicum PY - 2020 SP - 107 EP - 114 VL - 56 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2020-2-107/ DO - 10.5817/AM2020-2-107 LA - en ID - 10_5817_AM2020_2_107 ER -
%0 Journal Article %A Klassen, Eric %A Michor, Peter W. %T Closed surfaces with different shapes that are indistinguishable by the SRNF %J Archivum mathematicum %D 2020 %P 107-114 %V 56 %N 2 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2020-2-107/ %R 10.5817/AM2020-2-107 %G en %F 10_5817_AM2020_2_107
Klassen, Eric; Michor, Peter W. Closed surfaces with different shapes that are indistinguishable by the SRNF. Archivum mathematicum, Tome 56 (2020) no. 2, pp. 107-114. doi: 10.5817/AM2020-2-107
[1] Aledo, J.A., Alias, L.J., Romero, A.: A New Proof of Liebmann Classical Rigidity Theorem for Surfaces in Space Forms. Rocky Mountain J. Math. 35 (6) (2005), 1811–1824. | DOI | MR
[2] Bauer, M., Charon, N., Harms, P.: Inexact Elastic Shape Matching in the Square Root Normal Field Framework. Geometric Science of Information (Nielsen, F., Barbaresco, F., eds.), 2019, pp. 13–21.
[3] Hirsch, M.W.: Differential Topology. Springer-Verlag, 1996. | MR
[4] Jermyn, I., Kurtek, S., Laga, H., Srivastava, A: Elastic shape analysis of three-dimensional objects. Synthesis Lectures on Computer Vision 7 (2017), 1–185. | DOI
[5] Jermyn, I.H., Kurtek, S., Klassen, E., Srivastava, A.: Elastic shape matching of parameterized surfaces using square root normal fields. Computer Vision – ECCV 2012 (2012), 804–817.
[6] Laga, H., Qian, X., Jermyn, I., Srivastava, A.: Numerical Inversion of SRNF Maps for Elastic Shape Analysis of Genus-Zero Surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 39 (2016), 2451–2464. | DOI
[7] Michor, P.W.: Topics in differential geometry. Graduate Studies in Mathematics, vol. 93, American Mathematical Society, Providence, RI, 2008. | DOI | MR
[8] Michor, P.W.: Manifolds of mappings for continuum mechanics. Geometric Continuum Mechanics (Segev, R., Epstein, M., eds.), Birkhäuser, June 2020, arxiv:1909.00445, pp. 3–75. | MR
[9] Minkowski, H.: Volumen und Oberfläche. Math. Ann. 57 (4) (1903), 447–495. | DOI | MR
Cité par Sources :