Composite positive integers whose sum of prime factors is prime
Archivum mathematicum, Tome 56 (2020) no. 1, pp. 49-64.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this note, we show that the counting function of the number of composite positive integers $n\le x$ such that $\beta (n)=\sum _{p\mid n} p$ is a prime is of order of magnitude at least $x/(\log x)^3$ and at most $x/ \log x$.
DOI : 10.5817/AM2020-1-49
Classification : 11N25, 11N36
Keywords: primes; applications of sieve methods
@article{10_5817_AM2020_1_49,
     author = {Luca, Florian and Moodley, Damon},
     title = {Composite positive integers whose sum of prime factors is prime},
     journal = {Archivum mathematicum},
     pages = {49--64},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {2020},
     doi = {10.5817/AM2020-1-49},
     mrnumber = {4075888},
     zbl = {07177880},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-1-49/}
}
TY  - JOUR
AU  - Luca, Florian
AU  - Moodley, Damon
TI  - Composite positive integers whose sum of prime factors is prime
JO  - Archivum mathematicum
PY  - 2020
SP  - 49
EP  - 64
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2020-1-49/
DO  - 10.5817/AM2020-1-49
LA  - en
ID  - 10_5817_AM2020_1_49
ER  - 
%0 Journal Article
%A Luca, Florian
%A Moodley, Damon
%T Composite positive integers whose sum of prime factors is prime
%J Archivum mathematicum
%D 2020
%P 49-64
%V 56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2020-1-49/
%R 10.5817/AM2020-1-49
%G en
%F 10_5817_AM2020_1_49
Luca, Florian; Moodley, Damon. Composite positive integers whose sum of prime factors is prime. Archivum mathematicum, Tome 56 (2020) no. 1, pp. 49-64. doi : 10.5817/AM2020-1-49. http://geodesic.mathdoc.fr/articles/10.5817/AM2020-1-49/

Cité par Sources :