Keywords: primes; applications of sieve methods
@article{10_5817_AM2020_1_49,
author = {Luca, Florian and Moodley, Damon},
title = {Composite positive integers whose sum of prime factors is prime},
journal = {Archivum mathematicum},
pages = {49--64},
year = {2020},
volume = {56},
number = {1},
doi = {10.5817/AM2020-1-49},
mrnumber = {4075888},
zbl = {07177880},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-1-49/}
}
TY - JOUR AU - Luca, Florian AU - Moodley, Damon TI - Composite positive integers whose sum of prime factors is prime JO - Archivum mathematicum PY - 2020 SP - 49 EP - 64 VL - 56 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2020-1-49/ DO - 10.5817/AM2020-1-49 LA - en ID - 10_5817_AM2020_1_49 ER -
Luca, Florian; Moodley, Damon. Composite positive integers whose sum of prime factors is prime. Archivum mathematicum, Tome 56 (2020) no. 1, pp. 49-64. doi: 10.5817/AM2020-1-49
[1] Bateman, P.T., Horn, R.A.: A heuristic asymptotic formula concerning the distribution of prime numbers. Math. Comp. 16 (1962), 363–367. | DOI | MR
[2] Chudakov, N.: On Goldbach-Vinogradov’s theorem. Ann. of Math. (2) 48 (1947), 515–545. | DOI | MR
[3] De Koninck, J.-M., Luca, F.: Integers divisible by the sum of their prime factors. Mathematika 52 (2005), 69–77. | DOI | MR
[4] De Koninck, J.-M., Luca, F.: Integers divisible by sums of powers of their prime factors. J. Number Theory 128 (2008), 557–563. | DOI | MR
[5] De Koninck, J.-M., Luca, F.: Analytic number theory. Exploring the anatomy of integers. Graduate Studies in Mathematics, vol. 134, American Mathematical Society, Providence, RI, 2012. | MR
[6] De Koninck, J.-M., Sitaramachandra, R.R.: Sums involving the largest prime divisor of an integer. Acta Arith. 48 (1987), 3–8. | MR
[7] Erdös, P., Pomerance, C.: On the largest prime factors of $n$ and $n+1$. Aequationes Math. 17 (1978), 311–321. | DOI | MR
[8] Nelson, C., Penny, D.E., Pomerance, C.: 714 and 715. J. Recreational Math. 7 (1974), 87–89. | MR
[9] Pomerance, C.: Ruth–Aaron numbers revisited. Paul Erdös and his Mathematics, vol. 11, János Bolyai Math. Soc., Budapest 1999, Bolyai Soc. Math. Stud., 2002, pp. 567–579. | MR
[10] Wheeler, F.S.: Two differential-difference equations arising in number theory. Trans. Amer. Math. Soc. 318 (1990), 491–523. | DOI | MR
Cité par Sources :