Composite positive integers whose sum of prime factors is prime
Archivum mathematicum, Tome 56 (2020) no. 1, pp. 49-64
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this note, we show that the counting function of the number of composite positive integers $n\le x$ such that $\beta (n)=\sum _{p\mid n} p$ is a prime is of order of magnitude at least $x/(\log x)^3$ and at most $x/ \log x$.
DOI :
10.5817/AM2020-1-49
Classification :
11N25, 11N36
Keywords: primes; applications of sieve methods
Keywords: primes; applications of sieve methods
@article{10_5817_AM2020_1_49,
author = {Luca, Florian and Moodley, Damon},
title = {Composite positive integers whose sum of prime factors is prime},
journal = {Archivum mathematicum},
pages = {49--64},
publisher = {mathdoc},
volume = {56},
number = {1},
year = {2020},
doi = {10.5817/AM2020-1-49},
mrnumber = {4075888},
zbl = {07177880},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-1-49/}
}
TY - JOUR AU - Luca, Florian AU - Moodley, Damon TI - Composite positive integers whose sum of prime factors is prime JO - Archivum mathematicum PY - 2020 SP - 49 EP - 64 VL - 56 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2020-1-49/ DO - 10.5817/AM2020-1-49 LA - en ID - 10_5817_AM2020_1_49 ER -
Luca, Florian; Moodley, Damon. Composite positive integers whose sum of prime factors is prime. Archivum mathematicum, Tome 56 (2020) no. 1, pp. 49-64. doi: 10.5817/AM2020-1-49
Cité par Sources :