Finiteness of local homology modules
Archivum mathematicum, Tome 56 (2020) no. 1, pp. 31-41.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $I$ be an ideal of Noetherian ring $R$ and $M$ a finitely generated $R$-module. In this paper, we introduce the concept of weakly colaskerian modules and by using this concept, we give some vanishing and finiteness results for local homology modules. Let $I_{M}:=\operatorname{Ann}_{R}(M/IM)$, we will prove that for any integer $n$ \begin{enumerate} \item[(i)] If $N$ is a weakly colaskerian linearly compact $R$-module such that $(0:_N {I_M})\neq 0$ then $$ \operatorname{width}_{I_M}(N)= \inf\{i\mid \operatorname{H}_i^{I_M}(N)\neq 0 \} =\inf\{i \mid \operatorname{H}_i^I(M,N)\neq 0 \}\,. $$ \item[(ii)] If $(R,\frak{m})$ is a Noetherian local ring and $N$ is an artinian $R$-module then \begin{multline*} \cup_{i}\operatorname{Cos}_R\big(\operatorname{H}_i^{I_M}(N)\big)=\cup_{i}\operatorname{Cos}_R\big(\operatorname{H}_i^I(M,N)\big)=\\ \cup_{i}\operatorname{Cos}_R\big(\operatorname{Tor}_i^R(M/IM,N)\big)\,, \end{multline*} \begin{multline*} \inf\{i \mid \operatorname{H}_i^{I_M}(N) \text{ is not Noetherian $R$-module\,} \}=\\ \inf\{i \mid \operatorname{H}_i^I(M,N) \mbox{\ is not Noetherian $R$-module\,}\}\,. \end{multline*} \end{enumerate}
DOI : 10.5817/AM2020-1-31
Classification : 13D45, 16E30
Keywords: coregular sequence; local homology; weakly colaskerian
@article{10_5817_AM2020_1_31,
     author = {Rezaei, Shahram},
     title = {Finiteness of local homology modules},
     journal = {Archivum mathematicum},
     pages = {31--41},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {2020},
     doi = {10.5817/AM2020-1-31},
     mrnumber = {4075886},
     zbl = {07177878},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-1-31/}
}
TY  - JOUR
AU  - Rezaei, Shahram
TI  - Finiteness of local homology modules
JO  - Archivum mathematicum
PY  - 2020
SP  - 31
EP  - 41
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2020-1-31/
DO  - 10.5817/AM2020-1-31
LA  - en
ID  - 10_5817_AM2020_1_31
ER  - 
%0 Journal Article
%A Rezaei, Shahram
%T Finiteness of local homology modules
%J Archivum mathematicum
%D 2020
%P 31-41
%V 56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2020-1-31/
%R 10.5817/AM2020-1-31
%G en
%F 10_5817_AM2020_1_31
Rezaei, Shahram. Finiteness of local homology modules. Archivum mathematicum, Tome 56 (2020) no. 1, pp. 31-41. doi : 10.5817/AM2020-1-31. http://geodesic.mathdoc.fr/articles/10.5817/AM2020-1-31/

Cité par Sources :