Finiteness of local homology modules
Archivum mathematicum, Tome 56 (2020) no. 1, pp. 31-41 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $I$ be an ideal of Noetherian ring $R$ and $M$ a finitely generated $R$-module. In this paper, we introduce the concept of weakly colaskerian modules and by using this concept, we give some vanishing and finiteness results for local homology modules. Let $I_{M}:=\operatorname{Ann}_{R}(M/IM)$, we will prove that for any integer $n$ \begin{enumerate} \item[(i)] If $N$ is a weakly colaskerian linearly compact $R$-module such that $(0:_N {I_M})\neq 0$ then $$ \operatorname{width}_{I_M}(N)= \inf\{i\mid \operatorname{H}_i^{I_M}(N)\neq 0 \} =\inf\{i \mid \operatorname{H}_i^I(M,N)\neq 0 \}\,. $$ \item[(ii)] If $(R,\frak{m})$ is a Noetherian local ring and $N$ is an artinian $R$-module then \begin{multline*} \cup_{i
Let $I$ be an ideal of Noetherian ring $R$ and $M$ a finitely generated $R$-module. In this paper, we introduce the concept of weakly colaskerian modules and by using this concept, we give some vanishing and finiteness results for local homology modules. Let $I_{M}:=\operatorname{Ann}_{R}(M/IM)$, we will prove that for any integer $n$ \begin{enumerate} \item[(i)] If $N$ is a weakly colaskerian linearly compact $R$-module such that $(0:_N {I_M})\neq 0$ then $$ \operatorname{width}_{I_M}(N)= \inf\{i\mid \operatorname{H}_i^{I_M}(N)\neq 0 \} =\inf\{i \mid \operatorname{H}_i^I(M,N)\neq 0 \}\,. $$ \item[(ii)] If $(R,\frak{m})$ is a Noetherian local ring and $N$ is an artinian $R$-module then \begin{multline*} \cup_{i}\operatorname{Cos}_R\big(\operatorname{H}_i^{I_M}(N)\big)=\cup_{i}\operatorname{Cos}_R\big(\operatorname{H}_i^I(M,N)\big)=\\ \cup_{i}\operatorname{Cos}_R\big(\operatorname{Tor}_i^R(M/IM,N)\big)\,, \end{multline*} \begin{multline*} \inf\{i \mid \operatorname{H}_i^{I_M}(N) \text{ is not Noetherian $R$-module\,} \}=\\ \inf\{i \mid \operatorname{H}_i^I(M,N) \mbox{\ is not Noetherian $R$-module\,}\}\,. \end{multline*} \end{enumerate}
DOI : 10.5817/AM2020-1-31
Classification : 13D45, 16E30
Keywords: coregular sequence; local homology; weakly colaskerian
@article{10_5817_AM2020_1_31,
     author = {Rezaei, Shahram},
     title = {Finiteness of local homology modules},
     journal = {Archivum mathematicum},
     pages = {31--41},
     year = {2020},
     volume = {56},
     number = {1},
     doi = {10.5817/AM2020-1-31},
     mrnumber = {4075886},
     zbl = {07177878},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-1-31/}
}
TY  - JOUR
AU  - Rezaei, Shahram
TI  - Finiteness of local homology modules
JO  - Archivum mathematicum
PY  - 2020
SP  - 31
EP  - 41
VL  - 56
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2020-1-31/
DO  - 10.5817/AM2020-1-31
LA  - en
ID  - 10_5817_AM2020_1_31
ER  - 
%0 Journal Article
%A Rezaei, Shahram
%T Finiteness of local homology modules
%J Archivum mathematicum
%D 2020
%P 31-41
%V 56
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2020-1-31/
%R 10.5817/AM2020-1-31
%G en
%F 10_5817_AM2020_1_31
Rezaei, Shahram. Finiteness of local homology modules. Archivum mathematicum, Tome 56 (2020) no. 1, pp. 31-41. doi: 10.5817/AM2020-1-31

[1] Brodmann, M.P., Sharp, R.Y.: Local cohomology – An algebric introduction with geometric applications. Cambridge University Press, 1998. | MR

[2] Cuong, N.T., Nam, T.T.: On the co-localization, Co-support and Co-associated primes of local homology modules. Vietnam J. Math. 29 (4) (2001), 359–368. | MR

[3] Cuong, N.T., Nam, T.T.: On the representable linearly compact modules. Proc. Amer. Math. Soc. 130 (7) (2001), 1927–1936. | DOI | MR

[4] Cuong, N.T., Nam, T.T.: The $I$-adic completion and local homology for Artinian modules. Math. Proc. Cambridge Philos. Soc. 131 (2001), 61–72. | DOI | MR

[5] Cuong, N.T., Nam, T.T.: A local homology theory for linearly compact modules. J. Algebra 319 (2008), 4712–4737. | DOI | MR

[6] Divaani-Aazar, K., Mafi, A.: Associated primes of local cohomology modules. Proc. Amer. Math. Soc. 133 (3) (2005), 655–660. | DOI | MR | Zbl

[7] Greenlees, J.P.C., May, J.P.: Derived functors of I-adic completion and local homology. J. Algebra 149 (1992), 438–453. | DOI | MR

[8] Macdonald, I.G.: Duality over complete local rings. Topology 1 (1962), 213–235. | DOI | MR

[9] Macdonald, I.G.: Secondary representation of modules over a commutative ring. Symposia Mathematica 11 (1973), 23–43. | MR

[10] Melkersson, L., Schenzel, P.: The co-localization of an artinian module. Proc. Edinburgh Math. Soc. 38 (1995), 121–131. | MR

[11] Nam, T.T.: Co-support and Coartinian modules. Algebra Colloquium 15 (1) (2008), 83–96. | DOI | MR

[12] Nam, T.T.: A finiteness reult for co-associated and associated primes of generalized local homology and cohomology modules. Comm. Algebra 37 (2009), 1748–1757. | DOI | MR

[13] Nam, T.T.: Left-derived functors of the generalized I-adic completion and generalized local homology. Comm. Algebra 38 (2010), 440–453. | DOI | MR

[14] Nam, T.T.: Generalized local homology for artinian modules. Algebra Colloquium 1 (2012), 11205–1212. | MR

[15] Ooishi, A.: Matlis duality and the width of a modul. Hiroshima Math. J. 6 (1976), 573–587. | DOI | MR

[16] Shar, R.Y.: Steps in commutative algebra. London Mathematical Society Student Texts, vol. 19, Cambridge University Press, 1990. | MR

[17] Tang, Z.: Local homology theory for artinian modules. Comm. Algebra 22 (1994), 1675–1684. | DOI | MR

[18] Yassemi, S.: Coassociated primes. Comm. Algebra 23 (1995), 1473–1498. | DOI | MR

[19] Yen, D.N., Nam, T.T.: Generalized local homology and duality. Int. J. Algebra Comput. 29 (3) (2019), 581–601. | DOI | MR

[20] Zelinsky, D.: Linearly compact modules and rings. Amer. J. Math. 75 (1953), 79–90. | DOI | MR

[21] Zöschinger, H.: Koatomare Moduln. Math. Z. 170 (1980), 221–232. | MR

Cité par Sources :