Keywords: coregular sequence; local homology; weakly colaskerian
@article{10_5817_AM2020_1_31,
author = {Rezaei, Shahram},
title = {Finiteness of local homology modules},
journal = {Archivum mathematicum},
pages = {31--41},
year = {2020},
volume = {56},
number = {1},
doi = {10.5817/AM2020-1-31},
mrnumber = {4075886},
zbl = {07177878},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-1-31/}
}
Rezaei, Shahram. Finiteness of local homology modules. Archivum mathematicum, Tome 56 (2020) no. 1, pp. 31-41. doi: 10.5817/AM2020-1-31
[1] Brodmann, M.P., Sharp, R.Y.: Local cohomology – An algebric introduction with geometric applications. Cambridge University Press, 1998. | MR
[2] Cuong, N.T., Nam, T.T.: On the co-localization, Co-support and Co-associated primes of local homology modules. Vietnam J. Math. 29 (4) (2001), 359–368. | MR
[3] Cuong, N.T., Nam, T.T.: On the representable linearly compact modules. Proc. Amer. Math. Soc. 130 (7) (2001), 1927–1936. | DOI | MR
[4] Cuong, N.T., Nam, T.T.: The $I$-adic completion and local homology for Artinian modules. Math. Proc. Cambridge Philos. Soc. 131 (2001), 61–72. | DOI | MR
[5] Cuong, N.T., Nam, T.T.: A local homology theory for linearly compact modules. J. Algebra 319 (2008), 4712–4737. | DOI | MR
[6] Divaani-Aazar, K., Mafi, A.: Associated primes of local cohomology modules. Proc. Amer. Math. Soc. 133 (3) (2005), 655–660. | DOI | MR | Zbl
[7] Greenlees, J.P.C., May, J.P.: Derived functors of I-adic completion and local homology. J. Algebra 149 (1992), 438–453. | DOI | MR
[8] Macdonald, I.G.: Duality over complete local rings. Topology 1 (1962), 213–235. | DOI | MR
[9] Macdonald, I.G.: Secondary representation of modules over a commutative ring. Symposia Mathematica 11 (1973), 23–43. | MR
[10] Melkersson, L., Schenzel, P.: The co-localization of an artinian module. Proc. Edinburgh Math. Soc. 38 (1995), 121–131. | MR
[11] Nam, T.T.: Co-support and Coartinian modules. Algebra Colloquium 15 (1) (2008), 83–96. | DOI | MR
[12] Nam, T.T.: A finiteness reult for co-associated and associated primes of generalized local homology and cohomology modules. Comm. Algebra 37 (2009), 1748–1757. | DOI | MR
[13] Nam, T.T.: Left-derived functors of the generalized I-adic completion and generalized local homology. Comm. Algebra 38 (2010), 440–453. | DOI | MR
[14] Nam, T.T.: Generalized local homology for artinian modules. Algebra Colloquium 1 (2012), 11205–1212. | MR
[15] Ooishi, A.: Matlis duality and the width of a modul. Hiroshima Math. J. 6 (1976), 573–587. | DOI | MR
[16] Shar, R.Y.: Steps in commutative algebra. London Mathematical Society Student Texts, vol. 19, Cambridge University Press, 1990. | MR
[17] Tang, Z.: Local homology theory for artinian modules. Comm. Algebra 22 (1994), 1675–1684. | DOI | MR
[18] Yassemi, S.: Coassociated primes. Comm. Algebra 23 (1995), 1473–1498. | DOI | MR
[19] Yen, D.N., Nam, T.T.: Generalized local homology and duality. Int. J. Algebra Comput. 29 (3) (2019), 581–601. | DOI | MR
[20] Zelinsky, D.: Linearly compact modules and rings. Amer. J. Math. 75 (1953), 79–90. | DOI | MR
[21] Zöschinger, H.: Koatomare Moduln. Math. Z. 170 (1980), 221–232. | MR
Cité par Sources :