Keywords: supermanifold; almost complex structure; Riemannian metric; non-split
@article{10_5817_AM2019_4_229,
author = {Kalus, Matthias},
title = {Non-split almost complex and non-split {Riemannian} supermanifolds},
journal = {Archivum mathematicum},
pages = {229--238},
year = {2019},
volume = {55},
number = {4},
doi = {10.5817/AM2019-4-229},
mrnumber = {4038358},
zbl = {07144738},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-4-229/}
}
Kalus, Matthias. Non-split almost complex and non-split Riemannian supermanifolds. Archivum mathematicum, Tome 55 (2019) no. 4, pp. 229-238. doi: 10.5817/AM2019-4-229
[1] Batchelor, M.: The structure of supermanifolds. Trans. Amer. Math. Soc. 253 (1979), 329–338. | DOI | MR
[2] Batchelor, M.: Two approaches to supermanifolds. Trans. Amer. Math. Soc. 258 (1980), 257–270. | DOI | MR
[3] Berezin, F.A., Leites, D.A.: Supermanifolds. Dokl. Akad. Nauk SSSR 224 (3) (1975), 505–508. | MR
[4] Deligne, P., Morgan, J.W.: Notes on supersymmetry (following Joseph Bernstein). Quantum fields and strings: a course for mathematicians, vol. 1, AMS, 1999, pp. 41–97. | MR | Zbl
[5] Donagi, R., Witten, E.: Supermoduli space in not projected. Proc. Sympos. Pure Math., 2015, String-Math 2012, pp. 19–71. | MR
[6] Green, P.: On holomorphic graded manifolds. Proc. Amer. Math. Soc. 85 (4) (1982), 587–590. | DOI | MR
[7] Kostant, B.: Graded manifolds, graded Lie theory and prequantization. Lecture Notes in Math., vol. 570, Springer Verlag, 1987, pp. 177–306. | MR
[8] Koszul, J.-L.: Connections and splittings of supermanifolds. Differential Geom. Appl. 4 (2) (1994), 151–161. | DOI | MR
[9] Manin, Y.I.: Gauge field theory and complex geometry. Grundlehren der Mathematischen Wissenschaften, vol. 289, Springer-Verlag, Berlin, 1988, Translated from the Russian by N. Koblitz and J.R. King. | MR
[10] Massey, W.S.: Obstructions to the existence of almost complex structures. Bull. Amer. Math. Soc. 67 (1961), 559–564. | DOI | MR
[11] McDuff, D., Salamon, D.: Introduction to symplectic topology. oxford mathematical monographs. oxford science publications ed., The Clarendon Press, Oxford University Press, New York, 1995. | MR
[12] McHugh, A.: A Newlander-Nirenberg theorem for supermanifold. J. Math. Phys. 30 (5) (1989), 1039–1042. | DOI | MR
[13] Rothstein, M.: Deformations of complex supermanifolds. Proc. Amer. Math. Soc. 95 (2) (1985), 255–260. | DOI | MR
[14] Rothstein, M.: The structure of supersymplectic supermanifolds. Lecture Notes in Phys., Springer, Berlin, 1991, Differential geometric methods in theoretical physics (Rapallo, 1990), pp. 331–343. | MR
[15] Thomas, E.: Complex structures on real vector bundles. Amer. J. Math. 89 (1967), 887–908. | DOI | MR
[16] Vaintrob, A.Yu.: Deformations of complex structures on supermanifolds. Functional Anal. Appl. 18 (2) (1984), 135–136. | DOI | MR
[17] Varadarajan, V.S.: Supersymmetry for mathematicians: An introduction. Courant Lect. Notes Math. 11, New York University, Courant Institute of Mathematical Sciences, 2004. | MR
[18] Vishnyakova, E.: The splitting problem for complex homogeneous supermanifolds. J. Lie Theory 25 (2) (2015), 459–476. | MR
Cité par Sources :