Topological degree theory in fuzzy metric spaces
Archivum mathematicum, Tome 55 (2019) no. 2, pp. 83-96.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The aim of this paper is to modify the theory to fuzzy metric spaces, a natural extension of probabilistic ones. More precisely, the modification concerns fuzzily normed linear spaces, and, after defining a fuzzy concept of completeness, fuzzy Banach spaces. After discussing some properties of mappings with compact images, we define the (Leray-Schauder) degree by a sort of colimit extension of (already assumed) finite dimensional ones. Then, several properties of thus defined concept are proved. As an application, a fixed point theorem in the given context is presented.
DOI : 10.5817/AM2019-2-83
Classification : 47H05, 47H09, 47H10, 54H25
Keywords: fuzzy metric space; $t$-norm of $h$-type; topological degree theory
@article{10_5817_AM2019_2_83,
     author = {Rashid, M.H.M.},
     title = {Topological degree theory in fuzzy metric spaces},
     journal = {Archivum mathematicum},
     pages = {83--96},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {2019},
     doi = {10.5817/AM2019-2-83},
     mrnumber = {3964436},
     zbl = {07088760},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-2-83/}
}
TY  - JOUR
AU  - Rashid, M.H.M.
TI  - Topological degree theory in fuzzy metric spaces
JO  - Archivum mathematicum
PY  - 2019
SP  - 83
EP  - 96
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2019-2-83/
DO  - 10.5817/AM2019-2-83
LA  - en
ID  - 10_5817_AM2019_2_83
ER  - 
%0 Journal Article
%A Rashid, M.H.M.
%T Topological degree theory in fuzzy metric spaces
%J Archivum mathematicum
%D 2019
%P 83-96
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2019-2-83/
%R 10.5817/AM2019-2-83
%G en
%F 10_5817_AM2019_2_83
Rashid, M.H.M. Topological degree theory in fuzzy metric spaces. Archivum mathematicum, Tome 55 (2019) no. 2, pp. 83-96. doi : 10.5817/AM2019-2-83. http://geodesic.mathdoc.fr/articles/10.5817/AM2019-2-83/

Cité par Sources :