Topological degree theory in fuzzy metric spaces
Archivum mathematicum, Tome 55 (2019) no. 2, pp. 83-96 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The aim of this paper is to modify the theory to fuzzy metric spaces, a natural extension of probabilistic ones. More precisely, the modification concerns fuzzily normed linear spaces, and, after defining a fuzzy concept of completeness, fuzzy Banach spaces. After discussing some properties of mappings with compact images, we define the (Leray-Schauder) degree by a sort of colimit extension of (already assumed) finite dimensional ones. Then, several properties of thus defined concept are proved. As an application, a fixed point theorem in the given context is presented.
The aim of this paper is to modify the theory to fuzzy metric spaces, a natural extension of probabilistic ones. More precisely, the modification concerns fuzzily normed linear spaces, and, after defining a fuzzy concept of completeness, fuzzy Banach spaces. After discussing some properties of mappings with compact images, we define the (Leray-Schauder) degree by a sort of colimit extension of (already assumed) finite dimensional ones. Then, several properties of thus defined concept are proved. As an application, a fixed point theorem in the given context is presented.
DOI : 10.5817/AM2019-2-83
Classification : 47H05, 47H09, 47H10, 54H25
Keywords: fuzzy metric space; $t$-norm of $h$-type; topological degree theory
@article{10_5817_AM2019_2_83,
     author = {Rashid, M.H.M.},
     title = {Topological degree theory in fuzzy metric spaces},
     journal = {Archivum mathematicum},
     pages = {83--96},
     year = {2019},
     volume = {55},
     number = {2},
     doi = {10.5817/AM2019-2-83},
     mrnumber = {3964436},
     zbl = {07088760},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-2-83/}
}
TY  - JOUR
AU  - Rashid, M.H.M.
TI  - Topological degree theory in fuzzy metric spaces
JO  - Archivum mathematicum
PY  - 2019
SP  - 83
EP  - 96
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2019-2-83/
DO  - 10.5817/AM2019-2-83
LA  - en
ID  - 10_5817_AM2019_2_83
ER  - 
%0 Journal Article
%A Rashid, M.H.M.
%T Topological degree theory in fuzzy metric spaces
%J Archivum mathematicum
%D 2019
%P 83-96
%V 55
%N 2
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2019-2-83/
%R 10.5817/AM2019-2-83
%G en
%F 10_5817_AM2019_2_83
Rashid, M.H.M. Topological degree theory in fuzzy metric spaces. Archivum mathematicum, Tome 55 (2019) no. 2, pp. 83-96. doi: 10.5817/AM2019-2-83

[1] Akhmerov, R.R., Kamenskii, M.I., Potapov, A.S., Rodkina, A.E., Sadovskii, B.N.: Measures of noncompactness and condensing operators. Birkhäuser-Verlag, Basel-Boston-Berlin, 1992. | MR

[2] Amann, H.: A note on degree theory for gradient maps. Proc. Amer. Math. Soc. 85 (1982), 591–595. | DOI | MR

[3] Amann, H., Weiss, S.: On the uniqueness of the topological degree. Math. Z. 130 (1973), 39–54. | DOI | MR

[4] Bag, T., Samanta, S. K.: Finite dimensional fuzzy normed linear spaces. J. Fuzzy Math. 11 (3) (2003), 687–705. | MR

[5] Blasi, F.S. De, Myjak, J.: A remark on the definition of topological degree for set-valued mappings. J. Math. Anal. Appl. 92 (1983), 445–451. | DOI | MR

[6] Browder, F.E.: Nonlinear operators and nonlinear equations of evolution in Banach spaces. Proc. Symp. Pura Math., vol. 18, Amer. Math. Soc. Providence, 1976. | MR | Zbl

[7] Browder, F.E.: Fixed point theory and nonlinear problems. Bull. Amer. Math. Soc. 9 (1) (1983), 1–41. | DOI | MR

[8] Browder, F.E., Nussbaum, R.D.: The topological degree for noncompact nonlinear mappings in Banach spaces. Bull. Amer. Math. Soc. 74 (1968), 671–676. | DOI | MR

[9] Cellina, A., Lasota, A.: A new approach to the definition of topological degree for multi valued mappings. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 47 (1969), 434–440. | MR

[10] Cho, Yeol Je, Chen, Yu-Qing: Topological Degree Theory and Applications. CRC Press, 2006. | MR

[11] Cronin, J.: Fixed points and topological degree in nonlinear analysis. Mathematical Surveys, no. 11, American Mathematical Society, Providence, R.I, 1964, pp. xii+198 pp. | MR

[12] Deimling, K.: Nonlinear functional analysis. Springer-Verlag, Berlin, 1985. | MR

[13] Diestel, J.: Geometry of Banach spaces, Selected Topics. Lecture Notes in Math, vol. 485, Springer-Verlag, Berlin-New York, 1975, pp. xi+282 pp. | MR

[14] Fitzpatrick, .M.: A generalized degree for uniform limit of A-proper mappings. J. Math. Anal. Appl. 35 (1971), 536–552. | DOI | MR

[15] Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin, 1983. | MR | Zbl

[16] Gossez, J.-P.: On the subdifferential of saddle functions. J. Funct. Anal. 11 (1972), 220–230. | DOI | MR

[17] Leray, J.: Les problemes nonlineaires. Enseign. Math. 30 (1936), 141.

[18] Leray, J., Schauder, J.: Topologie et équations fonctionnelles. Ann. Sci. Ecole. Norm. Sup. 51 (1934), 45–78. | DOI | MR

[19] Mawhin, J.: Topological Degree Methods in Nonlinear Boundary Value Problems. Amer. Math. Soc., vol. 40, Providence, RI, 1979. | MR | Zbl

[20] Nǎdǎban, S., Dzitac, I.: Atomic Decomposition of fuzzy normed linear spaces for wavelet applications. Informatica 25 (4) (2014), 643–662. | DOI | MR

[21] Nirenberg, L.: Variational and topological methods in nonlinear problems. Bull. Amer. Math. Soc. 4 (1981), 267–302. | DOI | MR

[22] Roldán, A., Martínez-Moreno, J., Roldán, C.: On interrelationships between fuzzy metric structures. Iran. J. Fuzzy Syst. 10 (2) (2013), 133–150. | MR

[23] Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math. 10 (1960), 313–334. | DOI | MR | Zbl

[24] Schweizer, B., Sklar, A.: Probabilistical Metric Spaces. Dover Publications, New York, 2005. | MR

[25] Sherwood, H.: On the completion of probabilistic metric spaces. Z. Wahrsch. Verw. Gebiete 6 (1966), 62–64. | DOI | MR

[26] Wardowski, D.: Fuzzy contractive mappings and fixed points in fuzzy metric spaces. Fuzzy Sets and Systems 222 (2013), 108–114. | MR

Cité par Sources :