Fixed points with respect to the L-slice homomorphism $\sigma _{a} $
Archivum mathematicum, Tome 55 (2019) no. 1, pp. 43-53 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Given a locale $L$ and a join semilattice $J$ with bottom element $0_{J}$, a new concept $(\sigma ,J)$ called $L$-slice is defined,where $\sigma $ is as an action of the locale $L$ on the join semilattice $J$. The $L$-slice $(\sigma ,J)$ adopts topological properties of the locale $L$ through the action $\sigma $. It is shown that for each $a\in L$, $\sigma _{a} $ is an interior operator on $(\sigma ,J)$.The collection $M=\lbrace \sigma _{a};a \in L\rbrace $ is a Priestly space and a subslice of $L$-$\operatorname{Hom}(J,J)$. If the locale $L$ is spatial we establish an isomorphism between the $L$-slices $(\sigma ,L) $ and $(\delta ,M) $. We have shown that the fixed set of $\sigma _{a}$, $a\in L $ is a subslice of $(\sigma ,J)$ and prove some equivalent properties.
Given a locale $L$ and a join semilattice $J$ with bottom element $0_{J}$, a new concept $(\sigma ,J)$ called $L$-slice is defined,where $\sigma $ is as an action of the locale $L$ on the join semilattice $J$. The $L$-slice $(\sigma ,J)$ adopts topological properties of the locale $L$ through the action $\sigma $. It is shown that for each $a\in L$, $\sigma _{a} $ is an interior operator on $(\sigma ,J)$.The collection $M=\lbrace \sigma _{a};a \in L\rbrace $ is a Priestly space and a subslice of $L$-$\operatorname{Hom}(J,J)$. If the locale $L$ is spatial we establish an isomorphism between the $L$-slices $(\sigma ,L) $ and $(\delta ,M) $. We have shown that the fixed set of $\sigma _{a}$, $a\in L $ is a subslice of $(\sigma ,J)$ and prove some equivalent properties.
DOI : 10.5817/AM2019-1-43
Classification : 03G10, 06A12, 06D22
Keywords: $L$-slice; $L$-slice homomorphism; subslice; fixed set and ideals
@article{10_5817_AM2019_1_43,
     author = {Sabna, K.S. and Mangalambal, N.R.},
     title = {Fixed points with respect to the {L-slice} homomorphism $\sigma _{a} $},
     journal = {Archivum mathematicum},
     pages = {43--53},
     year = {2019},
     volume = {55},
     number = {1},
     doi = {10.5817/AM2019-1-43},
     mrnumber = {3939063},
     zbl = {07088757},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-1-43/}
}
TY  - JOUR
AU  - Sabna, K.S.
AU  - Mangalambal, N.R.
TI  - Fixed points with respect to the L-slice homomorphism $\sigma _{a} $
JO  - Archivum mathematicum
PY  - 2019
SP  - 43
EP  - 53
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2019-1-43/
DO  - 10.5817/AM2019-1-43
LA  - en
ID  - 10_5817_AM2019_1_43
ER  - 
%0 Journal Article
%A Sabna, K.S.
%A Mangalambal, N.R.
%T Fixed points with respect to the L-slice homomorphism $\sigma _{a} $
%J Archivum mathematicum
%D 2019
%P 43-53
%V 55
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2019-1-43/
%R 10.5817/AM2019-1-43
%G en
%F 10_5817_AM2019_1_43
Sabna, K.S.; Mangalambal, N.R. Fixed points with respect to the L-slice homomorphism $\sigma _{a} $. Archivum mathematicum, Tome 55 (2019) no. 1, pp. 43-53. doi: 10.5817/AM2019-1-43

[1] Abramsky, S., Jung, A.: Domain Theory. Handbook of Logic in Computer Science, 1994, pp. 1–168. | MR

[2] Atiyah, M.F., Macdonald, I.G.: Introduction to commutative algebra. Addison-Wesley Publishing Company, 1969, Student economy edition. | MR

[3] Birkhoff, G.: Lattice Theory. American Mathematical Society, 1940. | MR | Zbl

[4] Gratzer, G.: General lattice theory. Birkhauser, 2003. | MR

[5] Johnstone, P.T.: Stone Spaces. Cambridge University Press, 1982. | MR | Zbl

[6] Johnstone, P.T.: The point of pointless topology. Bull. Amer. Math. Soc. (N.S.) (1983), 41–53. | DOI | MR

[7] Matsumara, H.: Commutative algebra. W.A. Benjamin, Inc., New York, 1970. | MR

[8] Musli, C.: Introduction to Rings and Modules. Narosa Publishing House, 1994.

[9] Picado, J., Pultr, A.: Frames and locales. Topology without points Frontiers in Mathematics. Birkhäuser/Springer Basel AG, Basel. Frontiers in Mathematics. Birkhauser/Springer Basel AG, Basel, 2012. | MR

[10] Scott, D., Strachey, C.: Towards a mathematical semantics for computer languages. Proceedings of the Symposium on Computers and Automata, Polytechnic Institute of Brooklyn Press, New York, 1971.

[11] Vickers, S.: Topology via Logic. Cambridge Tracts Theoret. Comput. Sci. (1989). | MR

Cité par Sources :