Properads and homological differential operators related to surfaces
Archivum mathematicum, Tome 54 (2018) no. 5, pp. 299-312 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give a biased definition of a properad and an explicit example of a closed Frobenius properad. We recall the construction of the cobar complex and algebra over it. We give an equivalent description of the algebra in terms of Barannikov’s theory which is parallel to Barannikov’s theory of modular operads. We show that the algebra structure can be encoded as homological differential operator. Example of open Frobenius properad is mentioned along its specific properties.
We give a biased definition of a properad and an explicit example of a closed Frobenius properad. We recall the construction of the cobar complex and algebra over it. We give an equivalent description of the algebra in terms of Barannikov’s theory which is parallel to Barannikov’s theory of modular operads. We show that the algebra structure can be encoded as homological differential operator. Example of open Frobenius properad is mentioned along its specific properties.
DOI : 10.5817/AM2018-5-299
Classification : 18D50
Keywords: properads; Frobenius properad; cobar complex; Barannikov’s type theory; homological differential operators
@article{10_5817_AM2018_5_299,
     author = {Peksov\'a, Lada},
     title = {Properads and homological differential operators related to surfaces},
     journal = {Archivum mathematicum},
     pages = {299--312},
     year = {2018},
     volume = {54},
     number = {5},
     doi = {10.5817/AM2018-5-299},
     mrnumber = {3887356},
     zbl = {06997357},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-299/}
}
TY  - JOUR
AU  - Peksová, Lada
TI  - Properads and homological differential operators related to surfaces
JO  - Archivum mathematicum
PY  - 2018
SP  - 299
EP  - 312
VL  - 54
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-299/
DO  - 10.5817/AM2018-5-299
LA  - en
ID  - 10_5817_AM2018_5_299
ER  - 
%0 Journal Article
%A Peksová, Lada
%T Properads and homological differential operators related to surfaces
%J Archivum mathematicum
%D 2018
%P 299-312
%V 54
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-299/
%R 10.5817/AM2018-5-299
%G en
%F 10_5817_AM2018_5_299
Peksová, Lada. Properads and homological differential operators related to surfaces. Archivum mathematicum, Tome 54 (2018) no. 5, pp. 299-312. doi: 10.5817/AM2018-5-299

[1] Barannikov, S.: Modular operads and Batalin-Vilkovisky geometry. Internat. Math. Res. Notices (2007), Article ID rnm075, 31 pages. | MR

[2] Doubek, M., Jurčo, B., Münster, K.: Modular operads and the quantum open-closed homotopy algebra. J. High Energy Phys. (2015), Article ID 158 (2015), arXiv:1308.3223 [math.AT]. | MR

[3] Drummond-Cole, G.C., Terilla, J., Tradler, T.: Algebras over Cobar(coFrob). J. Homotopy Relat. Struct. 5 (1) (2010), 15–36, arXiv:0807.1241 [math.QA]. | MR

[4] Getzler, E., Kapranov, M.M.: Modular operads. Compositio Math. 110 (1) (1998), 65–126, arXiv:dg-ga/9408003. | DOI | MR

[5] Hackney, P., Robertson, M., Yau, D.: Infinity Properads and Infinity Wheeled Properads. Lecture Notes in Math., Springer International Publishing, 2015. | MR

[6] Markl, M., Shnider, S., Stasheff, J.: Operads in algebra, topology and physics. Math. Surveys Monogr., vol. 96, Amer. Math. Soc., Providence, RI, 2002. | MR | Zbl

[7] Merkulov, S., Vallette, B.: Deformation theory of representations of prop(erad)s I. J. Reine Angew. Math. 634 (2009), 51–106. | MR

[8] Münster, K., Sachs, I.: Quantum open-closed homotopy algebra and string field theory. Comm. Math. Phys. 321 (3) (2013), 769–801, arXiv:1109.4101 [hep-th]. | DOI | MR

[9] Peksová, L.: Algebras over operads and properads. Master's thesis, Charles Univ. Prague, 2016, https://is.cuni.cz/studium/dipl_uc/index.php?id=40d829716c2891d12550d202e189ef4e&tid=1&do=xdownload&fid=120229648&did=148219&vdetailu=1

[10] Vallette, B.: A Koszul duality for props. Trans. Amer. Math. Soc. 359 (10) (2007), 4865–4943, arXiv:math/0411542. | DOI | MR

Cité par Sources :