Properads and homological differential operators related to surfaces
Archivum mathematicum, Tome 54 (2018) no. 5, pp. 299-312.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We give a biased definition of a properad and an explicit example of a closed Frobenius properad. We recall the construction of the cobar complex and algebra over it. We give an equivalent description of the algebra in terms of Barannikov’s theory which is parallel to Barannikov’s theory of modular operads. We show that the algebra structure can be encoded as homological differential operator. Example of open Frobenius properad is mentioned along its specific properties.
DOI : 10.5817/AM2018-5-299
Classification : 18D50
Keywords: properads; Frobenius properad; cobar complex; Barannikov’s type theory; homological differential operators
@article{10_5817_AM2018_5_299,
     author = {Peksov\'a, Lada},
     title = {Properads and homological differential operators related to surfaces},
     journal = {Archivum mathematicum},
     pages = {299--312},
     publisher = {mathdoc},
     volume = {54},
     number = {5},
     year = {2018},
     doi = {10.5817/AM2018-5-299},
     mrnumber = {3887356},
     zbl = {06997357},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-299/}
}
TY  - JOUR
AU  - Peksová, Lada
TI  - Properads and homological differential operators related to surfaces
JO  - Archivum mathematicum
PY  - 2018
SP  - 299
EP  - 312
VL  - 54
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-299/
DO  - 10.5817/AM2018-5-299
LA  - en
ID  - 10_5817_AM2018_5_299
ER  - 
%0 Journal Article
%A Peksová, Lada
%T Properads and homological differential operators related to surfaces
%J Archivum mathematicum
%D 2018
%P 299-312
%V 54
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-299/
%R 10.5817/AM2018-5-299
%G en
%F 10_5817_AM2018_5_299
Peksová, Lada. Properads and homological differential operators related to surfaces. Archivum mathematicum, Tome 54 (2018) no. 5, pp. 299-312. doi : 10.5817/AM2018-5-299. http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-299/

Cité par Sources :