Properads and homological differential operators related to surfaces
Archivum mathematicum, Tome 54 (2018) no. 5, pp. 299-312
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We give a biased definition of a properad and an explicit example of a closed Frobenius properad. We recall the construction of the cobar complex and algebra over it. We give an equivalent description of the algebra in terms of Barannikov’s theory which is parallel to Barannikov’s theory of modular operads. We show that the algebra structure can be encoded as homological differential operator. Example of open Frobenius properad is mentioned along its specific properties.
DOI :
10.5817/AM2018-5-299
Classification :
18D50
Keywords: properads; Frobenius properad; cobar complex; Barannikov’s type theory; homological differential operators
Keywords: properads; Frobenius properad; cobar complex; Barannikov’s type theory; homological differential operators
@article{10_5817_AM2018_5_299,
author = {Peksov\'a, Lada},
title = {Properads and homological differential operators related to surfaces},
journal = {Archivum mathematicum},
pages = {299--312},
publisher = {mathdoc},
volume = {54},
number = {5},
year = {2018},
doi = {10.5817/AM2018-5-299},
mrnumber = {3887356},
zbl = {06997357},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-299/}
}
TY - JOUR AU - Peksová, Lada TI - Properads and homological differential operators related to surfaces JO - Archivum mathematicum PY - 2018 SP - 299 EP - 312 VL - 54 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-299/ DO - 10.5817/AM2018-5-299 LA - en ID - 10_5817_AM2018_5_299 ER -
Peksová, Lada. Properads and homological differential operators related to surfaces. Archivum mathematicum, Tome 54 (2018) no. 5, pp. 299-312. doi: 10.5817/AM2018-5-299
Cité par Sources :