Keywords: properads; Frobenius properad; cobar complex; Barannikov’s type theory; homological differential operators
@article{10_5817_AM2018_5_299,
author = {Peksov\'a, Lada},
title = {Properads and homological differential operators related to surfaces},
journal = {Archivum mathematicum},
pages = {299--312},
year = {2018},
volume = {54},
number = {5},
doi = {10.5817/AM2018-5-299},
mrnumber = {3887356},
zbl = {06997357},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-299/}
}
TY - JOUR AU - Peksová, Lada TI - Properads and homological differential operators related to surfaces JO - Archivum mathematicum PY - 2018 SP - 299 EP - 312 VL - 54 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-299/ DO - 10.5817/AM2018-5-299 LA - en ID - 10_5817_AM2018_5_299 ER -
Peksová, Lada. Properads and homological differential operators related to surfaces. Archivum mathematicum, Tome 54 (2018) no. 5, pp. 299-312. doi: 10.5817/AM2018-5-299
[1] Barannikov, S.: Modular operads and Batalin-Vilkovisky geometry. Internat. Math. Res. Notices (2007), Article ID rnm075, 31 pages. | MR
[2] Doubek, M., Jurčo, B., Münster, K.: Modular operads and the quantum open-closed homotopy algebra. J. High Energy Phys. (2015), Article ID 158 (2015), arXiv:1308.3223 [math.AT]. | MR
[3] Drummond-Cole, G.C., Terilla, J., Tradler, T.: Algebras over Cobar(coFrob). J. Homotopy Relat. Struct. 5 (1) (2010), 15–36, arXiv:0807.1241 [math.QA]. | MR
[4] Getzler, E., Kapranov, M.M.: Modular operads. Compositio Math. 110 (1) (1998), 65–126, arXiv:dg-ga/9408003. | DOI | MR
[5] Hackney, P., Robertson, M., Yau, D.: Infinity Properads and Infinity Wheeled Properads. Lecture Notes in Math., Springer International Publishing, 2015. | MR
[6] Markl, M., Shnider, S., Stasheff, J.: Operads in algebra, topology and physics. Math. Surveys Monogr., vol. 96, Amer. Math. Soc., Providence, RI, 2002. | MR | Zbl
[7] Merkulov, S., Vallette, B.: Deformation theory of representations of prop(erad)s I. J. Reine Angew. Math. 634 (2009), 51–106. | MR
[8] Münster, K., Sachs, I.: Quantum open-closed homotopy algebra and string field theory. Comm. Math. Phys. 321 (3) (2013), 769–801, arXiv:1109.4101 [hep-th]. | DOI | MR
[9] Peksová, L.: Algebras over operads and properads. Master's thesis, Charles Univ. Prague, 2016, https://is.cuni.cz/studium/dipl_uc/index.php?id=40d829716c2891d12550d202e189ef4e&tid=1&do=xdownload&fid=120229648&did=148219&vdetailu=1
[10] Vallette, B.: A Koszul duality for props. Trans. Amer. Math. Soc. 359 (10) (2007), 4865–4943, arXiv:math/0411542. | DOI | MR
Cité par Sources :