Contact Quantization: Quantum Mechanics = Parallel transport
Archivum mathematicum, Tome 54 (2018) no. 5, pp. 281-298.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Quantization together with quantum dynamics can be simultaneously formulated as the problem of finding an appropriate flat connection on a Hilbert bundle over a contact manifold. Contact geometry treats time, generalized positions and momenta as points on an underlying phase-spacetime and reduces classical mechanics to contact topology. Contact quantization describes quantum dynamics in terms of parallel transport for a flat connection; the ultimate goal being to also handle quantum systems in terms of contact topology. Our main result is a proof of local, formal gauge equivalence for a broad class of quantum dynamical systems—just as classical dynamics depends on choices of clocks, local quantum dynamics can be reduced to a problem of studying gauge transformations. We further show how to write quantum correlators in terms of parallel transport and in turn matrix elements for Hilbert bundle gauge transformations, and give the path integral formulation of these results. Finally, we show how to relate topology of the underlying contact manifold to boundary conditions for quantum wave functions.
DOI : 10.5817/AM2018-5-281
Classification : 53D10, 81S10
Keywords: quantum mechanics; contact geometry; quantization; contact topology; flat connections; clock ambiguity
@article{10_5817_AM2018_5_281,
     author = {Herczeg, G. and Latini, E. and Waldron, Andrew},
     title = {Contact {Quantization:} {Quantum} {Mechanics} = {Parallel} transport},
     journal = {Archivum mathematicum},
     pages = {281--298},
     publisher = {mathdoc},
     volume = {54},
     number = {5},
     year = {2018},
     doi = {10.5817/AM2018-5-281},
     mrnumber = {3887355},
     zbl = {06997356},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-281/}
}
TY  - JOUR
AU  - Herczeg, G.
AU  - Latini, E.
AU  - Waldron, Andrew
TI  - Contact Quantization: Quantum Mechanics = Parallel transport
JO  - Archivum mathematicum
PY  - 2018
SP  - 281
EP  - 298
VL  - 54
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-281/
DO  - 10.5817/AM2018-5-281
LA  - en
ID  - 10_5817_AM2018_5_281
ER  - 
%0 Journal Article
%A Herczeg, G.
%A Latini, E.
%A Waldron, Andrew
%T Contact Quantization: Quantum Mechanics = Parallel transport
%J Archivum mathematicum
%D 2018
%P 281-298
%V 54
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-281/
%R 10.5817/AM2018-5-281
%G en
%F 10_5817_AM2018_5_281
Herczeg, G.; Latini, E.; Waldron, Andrew. Contact Quantization: Quantum Mechanics = Parallel transport. Archivum mathematicum, Tome 54 (2018) no. 5, pp. 281-298. doi : 10.5817/AM2018-5-281. http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-281/

Cité par Sources :