Contact Quantization: Quantum Mechanics = Parallel transport
Archivum mathematicum, Tome 54 (2018) no. 5, pp. 281-298 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Quantization together with quantum dynamics can be simultaneously formulated as the problem of finding an appropriate flat connection on a Hilbert bundle over a contact manifold. Contact geometry treats time, generalized positions and momenta as points on an underlying phase-spacetime and reduces classical mechanics to contact topology. Contact quantization describes quantum dynamics in terms of parallel transport for a flat connection; the ultimate goal being to also handle quantum systems in terms of contact topology. Our main result is a proof of local, formal gauge equivalence for a broad class of quantum dynamical systems—just as classical dynamics depends on choices of clocks, local quantum dynamics can be reduced to a problem of studying gauge transformations. We further show how to write quantum correlators in terms of parallel transport and in turn matrix elements for Hilbert bundle gauge transformations, and give the path integral formulation of these results. Finally, we show how to relate topology of the underlying contact manifold to boundary conditions for quantum wave functions.
Quantization together with quantum dynamics can be simultaneously formulated as the problem of finding an appropriate flat connection on a Hilbert bundle over a contact manifold. Contact geometry treats time, generalized positions and momenta as points on an underlying phase-spacetime and reduces classical mechanics to contact topology. Contact quantization describes quantum dynamics in terms of parallel transport for a flat connection; the ultimate goal being to also handle quantum systems in terms of contact topology. Our main result is a proof of local, formal gauge equivalence for a broad class of quantum dynamical systems—just as classical dynamics depends on choices of clocks, local quantum dynamics can be reduced to a problem of studying gauge transformations. We further show how to write quantum correlators in terms of parallel transport and in turn matrix elements for Hilbert bundle gauge transformations, and give the path integral formulation of these results. Finally, we show how to relate topology of the underlying contact manifold to boundary conditions for quantum wave functions.
DOI : 10.5817/AM2018-5-281
Classification : 53D10, 81S10
Keywords: quantum mechanics; contact geometry; quantization; contact topology; flat connections; clock ambiguity
@article{10_5817_AM2018_5_281,
     author = {Herczeg, G. and Latini, E. and Waldron, Andrew},
     title = {Contact {Quantization:} {Quantum} {Mechanics} = {Parallel} transport},
     journal = {Archivum mathematicum},
     pages = {281--298},
     year = {2018},
     volume = {54},
     number = {5},
     doi = {10.5817/AM2018-5-281},
     mrnumber = {3887355},
     zbl = {06997356},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-281/}
}
TY  - JOUR
AU  - Herczeg, G.
AU  - Latini, E.
AU  - Waldron, Andrew
TI  - Contact Quantization: Quantum Mechanics = Parallel transport
JO  - Archivum mathematicum
PY  - 2018
SP  - 281
EP  - 298
VL  - 54
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-281/
DO  - 10.5817/AM2018-5-281
LA  - en
ID  - 10_5817_AM2018_5_281
ER  - 
%0 Journal Article
%A Herczeg, G.
%A Latini, E.
%A Waldron, Andrew
%T Contact Quantization: Quantum Mechanics = Parallel transport
%J Archivum mathematicum
%D 2018
%P 281-298
%V 54
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-281/
%R 10.5817/AM2018-5-281
%G en
%F 10_5817_AM2018_5_281
Herczeg, G.; Latini, E.; Waldron, Andrew. Contact Quantization: Quantum Mechanics = Parallel transport. Archivum mathematicum, Tome 54 (2018) no. 5, pp. 281-298. doi: 10.5817/AM2018-5-281

[1] Albrecht, A., Iglesias, A.: The clock ambiguity and the emergence of physical laws. Phys. Rev. D 77 (2008), 063506; arXiv:0708.2743 [hep-th]; S. B. Gryb, Jacobi's Principle and the Disappearance of Time Phys. Rev. D 81 (2010), 044035, arXiv:0804.2900 [gr-qc]; S. B. Gryb and K. Thebault, The role of time in relational quantum theories Found. Phys. 42 (2012),1210–1238 arXiv:1110.2429 [gr-qc]. | DOI | MR

[2] Batalin, I., Fradkin, E., Fradkina, T.: Another version for operatorial quantization of dynamical systems with irreducible constraints. Nuclear Phys. B 314 (1989), 158–174, I.A. Batalin and I.V. Tyutin, Existence theorem for the effective gauge algebra in the generalized canonical formalism with abelian conversion of second-class constraints, Internat. J. Modern Phys. A 6 (1991), 3255–3282. | MR

[3] Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Quantum Mechanics as a deformation of classical mechanics. Lett. Math. Phys. 1 (1977), 521–530. | DOI | MR

[4] Bieliavsky, P., Cahen, M., Gutt, S., Rawnsley, J., Schwachhöfer, L.: Symplectic connection. Int. J. Geom. Methods Mod. Phys. 3 (2006), 375–426, arXiv:math/0511194. | DOI | MR

[5] Bruce, A.J.: Contact structures and supersymmetric mechanics. arXiv:1108.5291 [math-ph].

[6] Čap, A., Slovák, J.:

[7] Cattaneo, A.S., Felder, G.: A path integral approach to the Kontsevich quantization formula. Comm. Math. Phys. 212 (2000), 591–611, arXiv:math/9902090. | DOI | MR | Zbl

[8] Dupré, M.J.: Classifying Hilbert bundles. J. Funct. Anal. 15 (1974), 244–278. | DOI | MR

[9] Fedosov, B.V.: A simple geometrical construction of deformation quantization. J. Differential Geom. 40 (1994), 213–238. | DOI | MR | Zbl

[10] Fitzpatrick, S.: On the geometric quantization of contact manifolds. J. Geom. Phys. 61 (2011), 2384–2399. | DOI | MR

[11] Fox, D.J.F.: Contact projective structures. Indiana Univ. Math. J. 54 (2005), 1547–1598, arXiv:math/0402332. | MR | Zbl

[12] Fradkin, E.S., Vilkovisky, G.: Quantization of relativistic systems with constraints. Phys. Lett. B 55 (1975), 224–226, I.A. Batalin and G.A. Vilkovisky, Relativistic s-matrix of dynamical systems with boson and fermion constraints, Phys. Lett. B 69 (1977), 309–312; E.S. Fradkin and T. Fradkina, Phys. Lett. B 72 (1978), 343–348; I. Batalin and E.S. Fradkin, La Rivista del Nuovo Cimento 9 (1986), 1–48. | DOI | MR

[13] Geiges, H.: An Introduction to Contact Topology. Cambridge University Pres, 2008, and P. Ševera, Contact geometry in lagrangian mechanics, J. Geom. Phys. 29 (1999), 235–242; A. Bravetti, C.S. Lopez-Monsalvo and F. Nettel, Contact symmetries and Hamiltonian thermodynamics, Ann. Phys. 361 (2015), 377-400, arXiv:1409.7340; A. Bravetti, H. Cruz and D. Tapias, Contact Hamiltonian dynamics, arXiv:1604.08266[math-ph]. | MR

[14] Grigoriev, M.A., Lyakhovich, S.L.: Fedosov Deformation Quantization as a BRST Theory. Comm. Math. Phys. 218 (2001), 437–457, hep-th/0003114. See also G. Barnich and M. Grigoriev, A. Semikhatov and I. Tipunin, Parent Field Theory and Unfolding in BRST First-Quantized Terms, 260, (2005), 147–181, hep-th/0406192. | DOI | MR

[15] Gukov, S., Witten, E.: Branes and quantization. Adv. Theor. Math. Phys. 13 (2009), 1445–1518, arXiv:0809.0305 [hep-th]. | MR

[16] Herczeg, G., Waldron, A.: Contact geometry and quantum mechanics. Phys.Lett. B 781 (2018), 312–315, arXiv:1709.04557 [hep-th] . | DOI

[17] Kashiwara, M.: Quantization of contact manifolds. Publ. Res. Inst. Math. Sci. 32 (1) (1996), 1–7. | DOI | MR

[18] Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66 (2003), 157–216, arXiv:q-alg/9709040. | DOI | MR | Zbl

[19] Krýsl, S.: Cohomology of the de Rham complex twisted by the oscillatory representation. Differential Geom. Appl. 33 (2014), 290–297, arXiv:1304.5704 [math.DG]. | DOI | MR

[20] Małkiewicz, P., Miroszewski, A.: Internal clock formulation of quantum mechanics. Phys. Rev. D 96 (2017), 046003, arXiv:1706.00743 [gr-qc]. | DOI | MR

[21] Manin, Y.: Topics in Noncommutative Geometry. M. B. Porter Lectures, Princeton University Press, Princeton, NJ, 1991. | MR | Zbl

[22] Rajeev, S.G.: Quantization of contact manifolds and thermodynamics. Ann. Physics 323 (2008), 768–782. | DOI | MR

[23] Schwarz, A.S.: Superanalogs of symplectic and contact geometry and their applications to quantum field theory. Topics in statistical and theoretical physics, vol. 177, Amer. Math. Soc. Transl. Ser. 2, 1996, Adv. Math. Sci., 32, arXiv:hep-th/9406120, pp. 203–218. | MR

[24] Yoshioka, A.: Contact Weyl manifold over a symplectic manifold. Lie groups, geometric structures and differential equations – one hundred years after Sophus Lie. Adv. Stud. Pure Math. 37 (2002), 459–493, A. Yoshioka, Il Nuov. Cim. 38C (2015), 173. | MR

Cité par Sources :