Contact Quantization: Quantum Mechanics = Parallel transport
Archivum mathematicum, Tome 54 (2018) no. 5, pp. 281-298
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Quantization together with quantum dynamics can be simultaneously formulated as the problem of finding an appropriate flat connection on a Hilbert bundle over a contact manifold. Contact geometry treats time, generalized positions and momenta as points on an underlying phase-spacetime and reduces classical mechanics to contact topology. Contact quantization describes quantum dynamics in terms of parallel transport for a flat connection; the ultimate goal being to also handle quantum systems in terms of contact topology. Our main result is a proof of local, formal gauge equivalence for a broad class of quantum dynamical systems—just as classical dynamics depends on choices of clocks, local quantum dynamics can be reduced to a problem of studying gauge transformations. We further show how to write quantum correlators in terms of parallel transport and in turn matrix elements for Hilbert bundle gauge transformations, and give the path integral formulation of these results. Finally, we show how to relate topology of the underlying contact manifold to boundary conditions for quantum wave functions.
DOI :
10.5817/AM2018-5-281
Classification :
53D10, 81S10
Keywords: quantum mechanics; contact geometry; quantization; contact topology; flat connections; clock ambiguity
Keywords: quantum mechanics; contact geometry; quantization; contact topology; flat connections; clock ambiguity
@article{10_5817_AM2018_5_281,
author = {Herczeg, G. and Latini, E. and Waldron, Andrew},
title = {Contact {Quantization:} {Quantum} {Mechanics} = {Parallel} transport},
journal = {Archivum mathematicum},
pages = {281--298},
publisher = {mathdoc},
volume = {54},
number = {5},
year = {2018},
doi = {10.5817/AM2018-5-281},
mrnumber = {3887355},
zbl = {06997356},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-281/}
}
TY - JOUR AU - Herczeg, G. AU - Latini, E. AU - Waldron, Andrew TI - Contact Quantization: Quantum Mechanics = Parallel transport JO - Archivum mathematicum PY - 2018 SP - 281 EP - 298 VL - 54 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-281/ DO - 10.5817/AM2018-5-281 LA - en ID - 10_5817_AM2018_5_281 ER -
%0 Journal Article %A Herczeg, G. %A Latini, E. %A Waldron, Andrew %T Contact Quantization: Quantum Mechanics = Parallel transport %J Archivum mathematicum %D 2018 %P 281-298 %V 54 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-281/ %R 10.5817/AM2018-5-281 %G en %F 10_5817_AM2018_5_281
Herczeg, G.; Latini, E.; Waldron, Andrew. Contact Quantization: Quantum Mechanics = Parallel transport. Archivum mathematicum, Tome 54 (2018) no. 5, pp. 281-298. doi: 10.5817/AM2018-5-281
Cité par Sources :