Keywords: quantum mechanics; contact geometry; quantization; contact topology; flat connections; clock ambiguity
@article{10_5817_AM2018_5_281,
author = {Herczeg, G. and Latini, E. and Waldron, Andrew},
title = {Contact {Quantization:} {Quantum} {Mechanics} = {Parallel} transport},
journal = {Archivum mathematicum},
pages = {281--298},
year = {2018},
volume = {54},
number = {5},
doi = {10.5817/AM2018-5-281},
mrnumber = {3887355},
zbl = {06997356},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-281/}
}
TY - JOUR AU - Herczeg, G. AU - Latini, E. AU - Waldron, Andrew TI - Contact Quantization: Quantum Mechanics = Parallel transport JO - Archivum mathematicum PY - 2018 SP - 281 EP - 298 VL - 54 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-281/ DO - 10.5817/AM2018-5-281 LA - en ID - 10_5817_AM2018_5_281 ER -
%0 Journal Article %A Herczeg, G. %A Latini, E. %A Waldron, Andrew %T Contact Quantization: Quantum Mechanics = Parallel transport %J Archivum mathematicum %D 2018 %P 281-298 %V 54 %N 5 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-281/ %R 10.5817/AM2018-5-281 %G en %F 10_5817_AM2018_5_281
Herczeg, G.; Latini, E.; Waldron, Andrew. Contact Quantization: Quantum Mechanics = Parallel transport. Archivum mathematicum, Tome 54 (2018) no. 5, pp. 281-298. doi: 10.5817/AM2018-5-281
[1] Albrecht, A., Iglesias, A.: The clock ambiguity and the emergence of physical laws. Phys. Rev. D 77 (2008), 063506; arXiv:0708.2743 [hep-th]; S. B. Gryb, Jacobi's Principle and the Disappearance of Time Phys. Rev. D 81 (2010), 044035, arXiv:0804.2900 [gr-qc]; S. B. Gryb and K. Thebault, The role of time in relational quantum theories Found. Phys. 42 (2012),1210–1238 arXiv:1110.2429 [gr-qc]. | DOI | MR
[2] Batalin, I., Fradkin, E., Fradkina, T.: Another version for operatorial quantization of dynamical systems with irreducible constraints. Nuclear Phys. B 314 (1989), 158–174, I.A. Batalin and I.V. Tyutin, Existence theorem for the effective gauge algebra in the generalized canonical formalism with abelian conversion of second-class constraints, Internat. J. Modern Phys. A 6 (1991), 3255–3282. | MR
[3] Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Quantum Mechanics as a deformation of classical mechanics. Lett. Math. Phys. 1 (1977), 521–530. | DOI | MR
[4] Bieliavsky, P., Cahen, M., Gutt, S., Rawnsley, J., Schwachhöfer, L.: Symplectic connection. Int. J. Geom. Methods Mod. Phys. 3 (2006), 375–426, arXiv:math/0511194. | DOI | MR
[5] Bruce, A.J.: Contact structures and supersymmetric mechanics. arXiv:1108.5291 [math-ph].
[6] Čap, A., Slovák, J.:
[7] Cattaneo, A.S., Felder, G.: A path integral approach to the Kontsevich quantization formula. Comm. Math. Phys. 212 (2000), 591–611, arXiv:math/9902090. | DOI | MR | Zbl
[8] Dupré, M.J.: Classifying Hilbert bundles. J. Funct. Anal. 15 (1974), 244–278. | DOI | MR
[9] Fedosov, B.V.: A simple geometrical construction of deformation quantization. J. Differential Geom. 40 (1994), 213–238. | DOI | MR | Zbl
[10] Fitzpatrick, S.: On the geometric quantization of contact manifolds. J. Geom. Phys. 61 (2011), 2384–2399. | DOI | MR
[11] Fox, D.J.F.: Contact projective structures. Indiana Univ. Math. J. 54 (2005), 1547–1598, arXiv:math/0402332. | MR | Zbl
[12] Fradkin, E.S., Vilkovisky, G.: Quantization of relativistic systems with constraints. Phys. Lett. B 55 (1975), 224–226, I.A. Batalin and G.A. Vilkovisky, Relativistic s-matrix of dynamical systems with boson and fermion constraints, Phys. Lett. B 69 (1977), 309–312; E.S. Fradkin and T. Fradkina, Phys. Lett. B 72 (1978), 343–348; I. Batalin and E.S. Fradkin, La Rivista del Nuovo Cimento 9 (1986), 1–48. | DOI | MR
[13] Geiges, H.: An Introduction to Contact Topology. Cambridge University Pres, 2008, and P. Ševera, Contact geometry in lagrangian mechanics, J. Geom. Phys. 29 (1999), 235–242; A. Bravetti, C.S. Lopez-Monsalvo and F. Nettel, Contact symmetries and Hamiltonian thermodynamics, Ann. Phys. 361 (2015), 377-400, arXiv:1409.7340; A. Bravetti, H. Cruz and D. Tapias, Contact Hamiltonian dynamics, arXiv:1604.08266[math-ph]. | MR
[14] Grigoriev, M.A., Lyakhovich, S.L.: Fedosov Deformation Quantization as a BRST Theory. Comm. Math. Phys. 218 (2001), 437–457, hep-th/0003114. See also G. Barnich and M. Grigoriev, A. Semikhatov and I. Tipunin, Parent Field Theory and Unfolding in BRST First-Quantized Terms, 260, (2005), 147–181, hep-th/0406192. | DOI | MR
[15] Gukov, S., Witten, E.: Branes and quantization. Adv. Theor. Math. Phys. 13 (2009), 1445–1518, arXiv:0809.0305 [hep-th]. | MR
[16] Herczeg, G., Waldron, A.: Contact geometry and quantum mechanics. Phys.Lett. B 781 (2018), 312–315, arXiv:1709.04557 [hep-th] . | DOI
[17] Kashiwara, M.: Quantization of contact manifolds. Publ. Res. Inst. Math. Sci. 32 (1) (1996), 1–7. | DOI | MR
[18] Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66 (2003), 157–216, arXiv:q-alg/9709040. | DOI | MR | Zbl
[19] Krýsl, S.: Cohomology of the de Rham complex twisted by the oscillatory representation. Differential Geom. Appl. 33 (2014), 290–297, arXiv:1304.5704 [math.DG]. | DOI | MR
[20] Małkiewicz, P., Miroszewski, A.: Internal clock formulation of quantum mechanics. Phys. Rev. D 96 (2017), 046003, arXiv:1706.00743 [gr-qc]. | DOI | MR
[21] Manin, Y.: Topics in Noncommutative Geometry. M. B. Porter Lectures, Princeton University Press, Princeton, NJ, 1991. | MR | Zbl
[22] Rajeev, S.G.: Quantization of contact manifolds and thermodynamics. Ann. Physics 323 (2008), 768–782. | DOI | MR
[23] Schwarz, A.S.: Superanalogs of symplectic and contact geometry and their applications to quantum field theory. Topics in statistical and theoretical physics, vol. 177, Amer. Math. Soc. Transl. Ser. 2, 1996, Adv. Math. Sci., 32, arXiv:hep-th/9406120, pp. 203–218. | MR
[24] Yoshioka, A.: Contact Weyl manifold over a symplectic manifold. Lie groups, geometric structures and differential equations – one hundred years after Sophus Lie. Adv. Stud. Pure Math. 37 (2002), 459–493, A. Yoshioka, Il Nuov. Cim. 38C (2015), 173. | MR
Cité par Sources :