Keywords: Poisson transforms; integral transform of differential forms; homogeneous spaces
@article{10_5817_AM2016_5_303,
author = {Harrach, Christoph},
title = {Poisson transforms for differential forms},
journal = {Archivum mathematicum},
pages = {303--311},
year = {2016},
volume = {52},
number = {5},
doi = {10.5817/AM2016-5-303},
mrnumber = {3610865},
zbl = {06674906},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2016-5-303/}
}
Harrach, Christoph. Poisson transforms for differential forms. Archivum mathematicum, Tome 52 (2016) no. 5, pp. 303-311. doi: 10.5817/AM2016-5-303
[1] Čap, A., Slovák, J.: Parabolic geometries I – Background and general theory. AMS, 2009. | MR | Zbl
[2] Gaillard, P.-Y.: Transformation de Poisson de formes différentielles. Le cas de l’espace hyperbolique. Comment. Math. Helv 61 (4) (1986), 581–616, (French). | DOI | MR | Zbl
[3] Greub, W., Halperin, S., Vanstone, R.: Connections, curvature, and cohomology. vol. I, Academic Press, 1972. | Zbl
[4] Helgason, S.: Groups and geometric analysis. Integral geometry, invariant differential operators and spherical functions. Pure Appl. Math. (1984). | MR | Zbl
[5] Helgason, S.: Geometric analysis on symmetric spaces. Mathematical Surveys and Monographs, vol. 39, AMS, 1994. | MR | Zbl
[6] Thurston, W.: The geometry and topology of three manifolds. Lecture Notes, available online: http://library.msri.org/books/gt3m
[7] van der Ven, H.: Vector valued Poisson transforms on Riemannian symmetric spaces of rank one. J. Funct. Anal. 119 (1994), 358–400. | DOI | MR | Zbl
[8] Yang, A.: Vector valued Poisson transforms on Riemannian symmetric spaces. Ph.D. thesis, Massachusetts Institute of Technology, 1994.
Cité par Sources :