Poisson transforms for differential forms
Archivum mathematicum, Tome 52 (2016) no. 5, pp. 303-311 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give a construction of a Poisson transform mapping density valued differential forms on generalized flag manifolds to differential forms on the corresponding Riemannian symmetric spaces, which can be described entirely in terms of finite dimensional representations of reductive Lie groups. Moreover, we will explicitly generate a family of degree-preserving Poisson transforms whose restriction to real valued differential forms has coclosed images. In addition, as a transform on sections of density bundles it can be related to the classical Poisson transform, proving that we produced a natural generalization of the classical theory.
We give a construction of a Poisson transform mapping density valued differential forms on generalized flag manifolds to differential forms on the corresponding Riemannian symmetric spaces, which can be described entirely in terms of finite dimensional representations of reductive Lie groups. Moreover, we will explicitly generate a family of degree-preserving Poisson transforms whose restriction to real valued differential forms has coclosed images. In addition, as a transform on sections of density bundles it can be related to the classical Poisson transform, proving that we produced a natural generalization of the classical theory.
DOI : 10.5817/AM2016-5-303
Classification : 22E46, 53C65
Keywords: Poisson transforms; integral transform of differential forms; homogeneous spaces
@article{10_5817_AM2016_5_303,
     author = {Harrach, Christoph},
     title = {Poisson transforms for differential forms},
     journal = {Archivum mathematicum},
     pages = {303--311},
     year = {2016},
     volume = {52},
     number = {5},
     doi = {10.5817/AM2016-5-303},
     mrnumber = {3610865},
     zbl = {06674906},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2016-5-303/}
}
TY  - JOUR
AU  - Harrach, Christoph
TI  - Poisson transforms for differential forms
JO  - Archivum mathematicum
PY  - 2016
SP  - 303
EP  - 311
VL  - 52
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2016-5-303/
DO  - 10.5817/AM2016-5-303
LA  - en
ID  - 10_5817_AM2016_5_303
ER  - 
%0 Journal Article
%A Harrach, Christoph
%T Poisson transforms for differential forms
%J Archivum mathematicum
%D 2016
%P 303-311
%V 52
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2016-5-303/
%R 10.5817/AM2016-5-303
%G en
%F 10_5817_AM2016_5_303
Harrach, Christoph. Poisson transforms for differential forms. Archivum mathematicum, Tome 52 (2016) no. 5, pp. 303-311. doi: 10.5817/AM2016-5-303

[1] Čap, A., Slovák, J.: Parabolic geometries I – Background and general theory. AMS, 2009. | MR | Zbl

[2] Gaillard, P.-Y.: Transformation de Poisson de formes différentielles. Le cas de l’espace hyperbolique. Comment. Math. Helv 61 (4) (1986), 581–616, (French). | DOI | MR | Zbl

[3] Greub, W., Halperin, S., Vanstone, R.: Connections, curvature, and cohomology. vol. I, Academic Press, 1972. | Zbl

[4] Helgason, S.: Groups and geometric analysis. Integral geometry, invariant differential operators and spherical functions. Pure Appl. Math. (1984). | MR | Zbl

[5] Helgason, S.: Geometric analysis on symmetric spaces. Mathematical Surveys and Monographs, vol. 39, AMS, 1994. | MR | Zbl

[6] Thurston, W.: The geometry and topology of three manifolds. Lecture Notes, available online: http://library.msri.org/books/gt3m

[7] van der Ven, H.: Vector valued Poisson transforms on Riemannian symmetric spaces of rank one. J. Funct. Anal. 119 (1994), 358–400. | DOI | MR | Zbl

[8] Yang, A.: Vector valued Poisson transforms on Riemannian symmetric spaces. Ph.D. thesis, Massachusetts Institute of Technology, 1994.

Cité par Sources :