$\mathfrak{g}$-quasi-Frobenius Lie algebras
Archivum mathematicum, Tome 52 (2016) no. 4, pp. 233-262 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A Lie version of Turaev’s $\overline{G}$-Frobenius algebras from 2-dimensional homotopy quantum field theory is proposed. The foundation for this Lie version is a structure we call a $\mathfrak{g}$-quasi-Frobenius Lie algebra for $\mathfrak{g}$ a finite dimensional Lie algebra. The latter consists of a quasi-Frobenius Lie algebra $(\mathfrak{q},\beta )$ together with a left $\mathfrak{g}$-module structure which acts on $\mathfrak{q}$ via derivations and for which $\beta $ is $\mathfrak{g}$-invariant. Geometrically, $\mathfrak{g}$-quasi-Frobenius Lie algebras are the Lie algebra structures associated to symplectic Lie groups with an action by a Lie group $G$ which acts via symplectic Lie group automorphisms. In addition to geometry, $\mathfrak{g}$-quasi-Frobenius Lie algebras can also be motivated from the point of view of category theory. Specifically, $\mathfrak{g}$-quasi Frobenius Lie algebras correspond to quasi Frobenius Lie objects in $\mathbf{Rep}(\mathfrak{g})$. If $\mathfrak{g}$ is now equipped with a Lie bialgebra structure, then the categorical formulation of $\overline{G}$-Frobenius algebras given in [16] suggests that the Lie version of a $\overline{G}$-Frobenius algebra is a quasi-Frobenius Lie object in $\mathbf{Rep}(D(\mathfrak{g}))$, where $D(\mathfrak{g})$ is the associated (semiclassical) Drinfeld double. We show that if $\mathfrak{g}$ is a quasitriangular Lie bialgebra, then every $\mathfrak{g}$-quasi-Frobenius Lie algebra has an induced $D(\mathfrak{g})$-action which gives it the structure of a $D(\mathfrak{g})$-quasi-Frobenius Lie algebra.
A Lie version of Turaev’s $\overline{G}$-Frobenius algebras from 2-dimensional homotopy quantum field theory is proposed. The foundation for this Lie version is a structure we call a $\mathfrak{g}$-quasi-Frobenius Lie algebra for $\mathfrak{g}$ a finite dimensional Lie algebra. The latter consists of a quasi-Frobenius Lie algebra $(\mathfrak{q},\beta )$ together with a left $\mathfrak{g}$-module structure which acts on $\mathfrak{q}$ via derivations and for which $\beta $ is $\mathfrak{g}$-invariant. Geometrically, $\mathfrak{g}$-quasi-Frobenius Lie algebras are the Lie algebra structures associated to symplectic Lie groups with an action by a Lie group $G$ which acts via symplectic Lie group automorphisms. In addition to geometry, $\mathfrak{g}$-quasi-Frobenius Lie algebras can also be motivated from the point of view of category theory. Specifically, $\mathfrak{g}$-quasi Frobenius Lie algebras correspond to quasi Frobenius Lie objects in $\mathbf{Rep}(\mathfrak{g})$. If $\mathfrak{g}$ is now equipped with a Lie bialgebra structure, then the categorical formulation of $\overline{G}$-Frobenius algebras given in [16] suggests that the Lie version of a $\overline{G}$-Frobenius algebra is a quasi-Frobenius Lie object in $\mathbf{Rep}(D(\mathfrak{g}))$, where $D(\mathfrak{g})$ is the associated (semiclassical) Drinfeld double. We show that if $\mathfrak{g}$ is a quasitriangular Lie bialgebra, then every $\mathfrak{g}$-quasi-Frobenius Lie algebra has an induced $D(\mathfrak{g})$-action which gives it the structure of a $D(\mathfrak{g})$-quasi-Frobenius Lie algebra.
DOI : 10.5817/AM2016-4-233
Classification : 18A05, 18E05, 22E60, 22Exx, 53D05
Keywords: symplectic Lie groups; quasi-Frobenius Lie algebras; Lie bialgebras; Drinfeld double; group actions
@article{10_5817_AM2016_4_233,
     author = {Pham, David N.},
     title = {$\mathfrak{g}${-quasi-Frobenius} {Lie} algebras},
     journal = {Archivum mathematicum},
     pages = {233--262},
     year = {2016},
     volume = {52},
     number = {4},
     doi = {10.5817/AM2016-4-233},
     mrnumber = {3610652},
     zbl = {06674902},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2016-4-233/}
}
TY  - JOUR
AU  - Pham, David N.
TI  - $\mathfrak{g}$-quasi-Frobenius Lie algebras
JO  - Archivum mathematicum
PY  - 2016
SP  - 233
EP  - 262
VL  - 52
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2016-4-233/
DO  - 10.5817/AM2016-4-233
LA  - en
ID  - 10_5817_AM2016_4_233
ER  - 
%0 Journal Article
%A Pham, David N.
%T $\mathfrak{g}$-quasi-Frobenius Lie algebras
%J Archivum mathematicum
%D 2016
%P 233-262
%V 52
%N 4
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2016-4-233/
%R 10.5817/AM2016-4-233
%G en
%F 10_5817_AM2016_4_233
Pham, David N. $\mathfrak{g}$-quasi-Frobenius Lie algebras. Archivum mathematicum, Tome 52 (2016) no. 4, pp. 233-262. doi: 10.5817/AM2016-4-233

[1] Abrams, L.: Two dimensional topological quantum field theories and Frobenius algebras. J. Knot Theory Ramifications 5 (1996), 569–587. | DOI | MR | Zbl

[2] Agaoka, Y.: Uniqueness of left invariant symplectic structures on the affine Lie group. Proc. Amer. Math. Soc. 129 (9) (2001), 2753–2762, (electronic). | DOI | MR | Zbl

[3] Atiyah, M.F.: Topological quantum field theory. Publ. Math. Inst. Hautes Études Sci. 68 (1988), 175–186. | DOI | MR

[4] Baues, O., Cortés, V.: Symplectic Lie Groups I–III. arXiv:1307.1629.

[5] Boyom, N.: Models for solvable symplectic Lie groups. Indiana Univ. Math. J. 42 (4) (1993), 1149–1168. | DOI | MR | Zbl

[6] Burde, D.: Characteristically nilpotent Lie algebras and symplectic structures. Forum Math. 18 (5) (2006), 769–787. | DOI | MR | Zbl

[7] Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, 1994. | MR | Zbl

[8] Chu, B.: Symplectic homogenous spaces. Trans. Amer. Math. Soc. 197 (1974), 145–159. | DOI | MR

[9] Drinfeld, V.G.: Hamiltonian structures on Lie groups, Lie bialgebras, and the geometric meaning of the classical Yang-Baxter equations. Dokl. Akad. Nauk SSSR 268 (2) (1983), 285–287, (Russian). | MR | Zbl

[10] Etingof, P., Schiffman, O.: Lectures on Quantum Groups. Lect. Math. Phys., Int. Press, 1998. | MR

[11] Golubitsky, M., Guillemin, V.: Stable mappings and their singularities. Grad. Texts in Math., vol. 14, Springer, Berlin, 1973. | DOI | MR | Zbl

[12] Goyvaerts, I., Vercruysse, J.: A Note on the Categorification of Lie Algebras. Lie Theory and Its Applications in Physics, Springer Proceedings in Math. $\&$ Stat., 2013, pp. 541–550. | MR | Zbl

[13] Guillemin, V., Pollack, A.: Differential Topology. Prentice-Hall, 1974. | MR | Zbl

[14] Helgason, S.: Differential Geometry, Lie groups, and Symmetric Spaces. Pure Appl. Math., 1978. | MR | Zbl

[15] Kaufmann, R.: Orbifolding Frobenius algebras. Internat. J. Math. 14 (6) (2003), 573–617. | DOI | MR | Zbl

[16] Kaufmann, R., Pham, D.: The Drinfel’d double and twisting in stringy orbifold theory. Internat. J. Math. 20 (5) (2009), 623–657. | DOI | MR | Zbl

[17] Kosmann-Schwarzbach, Y.: Poisson-Drinfel’d groups. Publ. Inst. Rech. Math. Av. 5 (12) (1987).

[18] Kosmann-Schwarzbach, Y.: Lie Bialgebras, Poisson Lie groups and dressing transformations. Integrability of nonlinear systems (Pondicherry, 1996), vol. 495, Lecture Notes in Phys., 1997, pp. 104–170. | MR | Zbl

[19] Lee, J.: Introduction to Smooth Manifolds. Springer-Verlag, New York Inc., 2003. | MR

[20] Lu, J., Weinstein, A.: Poisson Lie groups, dressing transformations, and Bruhat decompositions. J. Differential Geom. 31 (2) (1990), 501–526. | DOI | MR | Zbl

[21] Mikami, K.: Symplectic and Poisson structures on some loop groups. Contemp. Math. 179 (1994), 173–192. | DOI | MR | Zbl

[22] Ooms, A.: On Lie algebras having a primitive universal enveloping algebra. J. Algebra 32 (1974), 488–500. | DOI | MR | Zbl

[23] Ooms, A.: On Frobenius Lie algebras. Comm. Algebra 8 (1) (1980), 13–52. | DOI | MR | Zbl

[24] Semenov-Tian-Shansky, M.A.: What is a classical $r$-matrix?. Funct. Anal. Appl. 17 (1983), 259–272. | DOI

[25] Turaev, V.: Homotopy field theory in dimension 2 and group-algebras. arXiv.org:math/9910010, (1999).

[26] Vinberg, E.B.: A course in algebra. Graduate Studies in Math., vol. 56, AMS, 2003. | MR | Zbl

[27] Warner, F.: Foundations of Differentiable Manifolds and Lie Groups. Springer, 1983. | MR | Zbl

[28] Witten, E.: Topological quantum field theory. Comm. Math. Phys. 117 (1988), 353–386. | DOI | MR | Zbl

Cité par Sources :