$\mathfrak{g}$-quasi-Frobenius Lie algebras
Archivum mathematicum, Tome 52 (2016) no. 4, pp. 233-262.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A Lie version of Turaev’s $\overline{G}$-Frobenius algebras from 2-dimensional homotopy quantum field theory is proposed. The foundation for this Lie version is a structure we call a $\mathfrak{g}$-quasi-Frobenius Lie algebra for $\mathfrak{g}$ a finite dimensional Lie algebra. The latter consists of a quasi-Frobenius Lie algebra $(\mathfrak{q},\beta )$ together with a left $\mathfrak{g}$-module structure which acts on $\mathfrak{q}$ via derivations and for which $\beta $ is $\mathfrak{g}$-invariant. Geometrically, $\mathfrak{g}$-quasi-Frobenius Lie algebras are the Lie algebra structures associated to symplectic Lie groups with an action by a Lie group $G$ which acts via symplectic Lie group automorphisms. In addition to geometry, $\mathfrak{g}$-quasi-Frobenius Lie algebras can also be motivated from the point of view of category theory. Specifically, $\mathfrak{g}$-quasi Frobenius Lie algebras correspond to quasi Frobenius Lie objects in $\mathbf{Rep}(\mathfrak{g})$. If $\mathfrak{g}$ is now equipped with a Lie bialgebra structure, then the categorical formulation of $\overline{G}$-Frobenius algebras given in [16] suggests that the Lie version of a $\overline{G}$-Frobenius algebra is a quasi-Frobenius Lie object in $\mathbf{Rep}(D(\mathfrak{g}))$, where $D(\mathfrak{g})$ is the associated (semiclassical) Drinfeld double. We show that if $\mathfrak{g}$ is a quasitriangular Lie bialgebra, then every $\mathfrak{g}$-quasi-Frobenius Lie algebra has an induced $D(\mathfrak{g})$-action which gives it the structure of a $D(\mathfrak{g})$-quasi-Frobenius Lie algebra.
DOI : 10.5817/AM2016-4-233
Classification : 18A05, 18E05, 22E60, 22Exx, 53D05
Keywords: symplectic Lie groups; quasi-Frobenius Lie algebras; Lie bialgebras; Drinfeld double; group actions
@article{10_5817_AM2016_4_233,
     author = {Pham, David N.},
     title = {$\mathfrak{g}${-quasi-Frobenius} {Lie} algebras},
     journal = {Archivum mathematicum},
     pages = {233--262},
     publisher = {mathdoc},
     volume = {52},
     number = {4},
     year = {2016},
     doi = {10.5817/AM2016-4-233},
     mrnumber = {3610652},
     zbl = {06674902},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2016-4-233/}
}
TY  - JOUR
AU  - Pham, David N.
TI  - $\mathfrak{g}$-quasi-Frobenius Lie algebras
JO  - Archivum mathematicum
PY  - 2016
SP  - 233
EP  - 262
VL  - 52
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2016-4-233/
DO  - 10.5817/AM2016-4-233
LA  - en
ID  - 10_5817_AM2016_4_233
ER  - 
%0 Journal Article
%A Pham, David N.
%T $\mathfrak{g}$-quasi-Frobenius Lie algebras
%J Archivum mathematicum
%D 2016
%P 233-262
%V 52
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2016-4-233/
%R 10.5817/AM2016-4-233
%G en
%F 10_5817_AM2016_4_233
Pham, David N. $\mathfrak{g}$-quasi-Frobenius Lie algebras. Archivum mathematicum, Tome 52 (2016) no. 4, pp. 233-262. doi : 10.5817/AM2016-4-233. http://geodesic.mathdoc.fr/articles/10.5817/AM2016-4-233/

Cité par Sources :