Keywords: symplectic Lie groups; quasi-Frobenius Lie algebras; Lie bialgebras; Drinfeld double; group actions
@article{10_5817_AM2016_4_233,
author = {Pham, David N.},
title = {$\mathfrak{g}${-quasi-Frobenius} {Lie} algebras},
journal = {Archivum mathematicum},
pages = {233--262},
year = {2016},
volume = {52},
number = {4},
doi = {10.5817/AM2016-4-233},
mrnumber = {3610652},
zbl = {06674902},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2016-4-233/}
}
Pham, David N. $\mathfrak{g}$-quasi-Frobenius Lie algebras. Archivum mathematicum, Tome 52 (2016) no. 4, pp. 233-262. doi: 10.5817/AM2016-4-233
[1] Abrams, L.: Two dimensional topological quantum field theories and Frobenius algebras. J. Knot Theory Ramifications 5 (1996), 569–587. | DOI | MR | Zbl
[2] Agaoka, Y.: Uniqueness of left invariant symplectic structures on the affine Lie group. Proc. Amer. Math. Soc. 129 (9) (2001), 2753–2762, (electronic). | DOI | MR | Zbl
[3] Atiyah, M.F.: Topological quantum field theory. Publ. Math. Inst. Hautes Études Sci. 68 (1988), 175–186. | DOI | MR
[4] Baues, O., Cortés, V.: Symplectic Lie Groups I–III. arXiv:1307.1629.
[5] Boyom, N.: Models for solvable symplectic Lie groups. Indiana Univ. Math. J. 42 (4) (1993), 1149–1168. | DOI | MR | Zbl
[6] Burde, D.: Characteristically nilpotent Lie algebras and symplectic structures. Forum Math. 18 (5) (2006), 769–787. | DOI | MR | Zbl
[7] Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, 1994. | MR | Zbl
[8] Chu, B.: Symplectic homogenous spaces. Trans. Amer. Math. Soc. 197 (1974), 145–159. | DOI | MR
[9] Drinfeld, V.G.: Hamiltonian structures on Lie groups, Lie bialgebras, and the geometric meaning of the classical Yang-Baxter equations. Dokl. Akad. Nauk SSSR 268 (2) (1983), 285–287, (Russian). | MR | Zbl
[10] Etingof, P., Schiffman, O.: Lectures on Quantum Groups. Lect. Math. Phys., Int. Press, 1998. | MR
[11] Golubitsky, M., Guillemin, V.: Stable mappings and their singularities. Grad. Texts in Math., vol. 14, Springer, Berlin, 1973. | DOI | MR | Zbl
[12] Goyvaerts, I., Vercruysse, J.: A Note on the Categorification of Lie Algebras. Lie Theory and Its Applications in Physics, Springer Proceedings in Math. $\&$ Stat., 2013, pp. 541–550. | MR | Zbl
[13] Guillemin, V., Pollack, A.: Differential Topology. Prentice-Hall, 1974. | MR | Zbl
[14] Helgason, S.: Differential Geometry, Lie groups, and Symmetric Spaces. Pure Appl. Math., 1978. | MR | Zbl
[15] Kaufmann, R.: Orbifolding Frobenius algebras. Internat. J. Math. 14 (6) (2003), 573–617. | DOI | MR | Zbl
[16] Kaufmann, R., Pham, D.: The Drinfel’d double and twisting in stringy orbifold theory. Internat. J. Math. 20 (5) (2009), 623–657. | DOI | MR | Zbl
[17] Kosmann-Schwarzbach, Y.: Poisson-Drinfel’d groups. Publ. Inst. Rech. Math. Av. 5 (12) (1987).
[18] Kosmann-Schwarzbach, Y.: Lie Bialgebras, Poisson Lie groups and dressing transformations. Integrability of nonlinear systems (Pondicherry, 1996), vol. 495, Lecture Notes in Phys., 1997, pp. 104–170. | MR | Zbl
[19] Lee, J.: Introduction to Smooth Manifolds. Springer-Verlag, New York Inc., 2003. | MR
[20] Lu, J., Weinstein, A.: Poisson Lie groups, dressing transformations, and Bruhat decompositions. J. Differential Geom. 31 (2) (1990), 501–526. | DOI | MR | Zbl
[21] Mikami, K.: Symplectic and Poisson structures on some loop groups. Contemp. Math. 179 (1994), 173–192. | DOI | MR | Zbl
[22] Ooms, A.: On Lie algebras having a primitive universal enveloping algebra. J. Algebra 32 (1974), 488–500. | DOI | MR | Zbl
[23] Ooms, A.: On Frobenius Lie algebras. Comm. Algebra 8 (1) (1980), 13–52. | DOI | MR | Zbl
[24] Semenov-Tian-Shansky, M.A.: What is a classical $r$-matrix?. Funct. Anal. Appl. 17 (1983), 259–272. | DOI
[25] Turaev, V.: Homotopy field theory in dimension 2 and group-algebras. arXiv.org:math/9910010, (1999).
[26] Vinberg, E.B.: A course in algebra. Graduate Studies in Math., vol. 56, AMS, 2003. | MR | Zbl
[27] Warner, F.: Foundations of Differentiable Manifolds and Lie Groups. Springer, 1983. | MR | Zbl
[28] Witten, E.: Topological quantum field theory. Comm. Math. Phys. 117 (1988), 353–386. | DOI | MR | Zbl
Cité par Sources :