The $G$-graded identities of the Grassmann Algebra
Archivum mathematicum, Tome 52 (2016) no. 3, pp. 141-158 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $G$ be a finite abelian group with identity element $1_G$ and $L=\bigoplus _{g\in G}L^g$ be an infinite dimensional $G$-homogeneous vector space over a field of characteristic $0$. Let $E=E(L)$ be the Grassmann algebra generated by $L$. It follows that $E$ is a $G$-graded algebra. Let $|G|$ be odd, then we prove that in order to describe any ideal of $G$-graded identities of $E$ it is sufficient to deal with $G^{\prime }$-grading, where $|G^{\prime }| \le |G|$, $\dim _FL^{1_{G^{\prime }}}=\infty $ and $\dim _FL^{g^{\prime }}\infty $ if $g^{\prime }\ne 1_{G^{\prime }}$. In the same spirit of the case $|G|$ odd, if $|G|$ is even it is sufficient to study only those $G$-gradings such that $\dim _FL^g=\infty $, where $o(g)=2$, and all the other components are finite dimensional. We also compute graded cocharacters and codimensions of $E$ in the case $\dim L^{1_G}=\infty $ and $\dim L^g\infty $ if $g\ne 1_G$.
Let $G$ be a finite abelian group with identity element $1_G$ and $L=\bigoplus _{g\in G}L^g$ be an infinite dimensional $G$-homogeneous vector space over a field of characteristic $0$. Let $E=E(L)$ be the Grassmann algebra generated by $L$. It follows that $E$ is a $G$-graded algebra. Let $|G|$ be odd, then we prove that in order to describe any ideal of $G$-graded identities of $E$ it is sufficient to deal with $G^{\prime }$-grading, where $|G^{\prime }| \le |G|$, $\dim _FL^{1_{G^{\prime }}}=\infty $ and $\dim _FL^{g^{\prime }}\infty $ if $g^{\prime }\ne 1_{G^{\prime }}$. In the same spirit of the case $|G|$ odd, if $|G|$ is even it is sufficient to study only those $G$-gradings such that $\dim _FL^g=\infty $, where $o(g)=2$, and all the other components are finite dimensional. We also compute graded cocharacters and codimensions of $E$ in the case $\dim L^{1_G}=\infty $ and $\dim L^g\infty $ if $g\ne 1_G$.
DOI : 10.5817/AM2016-3-141
Classification : 16P90, 16R10, 16S10, 16W50
Keywords: graded polynomial identities
@article{10_5817_AM2016_3_141,
     author = {Centrone, Lucio},
     title = {The $G$-graded identities of the {Grassmann} {Algebra}},
     journal = {Archivum mathematicum},
     pages = {141--158},
     year = {2016},
     volume = {52},
     number = {3},
     doi = {10.5817/AM2016-3-141},
     mrnumber = {3553173},
     zbl = {06644064},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2016-3-141/}
}
TY  - JOUR
AU  - Centrone, Lucio
TI  - The $G$-graded identities of the Grassmann Algebra
JO  - Archivum mathematicum
PY  - 2016
SP  - 141
EP  - 158
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2016-3-141/
DO  - 10.5817/AM2016-3-141
LA  - en
ID  - 10_5817_AM2016_3_141
ER  - 
%0 Journal Article
%A Centrone, Lucio
%T The $G$-graded identities of the Grassmann Algebra
%J Archivum mathematicum
%D 2016
%P 141-158
%V 52
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2016-3-141/
%R 10.5817/AM2016-3-141
%G en
%F 10_5817_AM2016_3_141
Centrone, Lucio. The $G$-graded identities of the Grassmann Algebra. Archivum mathematicum, Tome 52 (2016) no. 3, pp. 141-158. doi: 10.5817/AM2016-3-141

[1] Anisimov, N.: $\mathbb{Z}_p$-codimension of $\mathbb{Z}_p$-identities of Grassmann algebra. Comm. Algebra 29 (9) (2001), 4211–4230. | DOI | MR

[2] Centrone, L.: $\mathbb{Z}_2$-graded identities of the Grassmann algebra in positive characteristic. Linear Algebra Appl. 435 (12) (2011), 3297–3313. | DOI | MR

[3] da Silva, V.R.T.: $\mathbb{Z}_2$-codimensions of the Grassmann algebra. Comm. Algebra 37 (9) (2009), 3342–3359. | DOI | MR

[4] Di Vincenzo, O.M.: A note on the identities of the Grassmann algebras. Boll. Un. Mat. Ital. A (7) 5 (3) (1991), 307–315. | MR | Zbl

[5] Di Vincenzo, O.M.: Cocharacters of $G$-graded algebras. Comm. Algebra 24 (10) (1996), 3293–3310. | DOI | MR | Zbl

[6] Di Vincenzo, O.M., da Silva, V.R.T.: On $Z_2$-graded polynomial identities of the Grassmann algebra. Linear Algebra Appl. 431 (2009), 56–72. | MR

[7] Di Vincenzo, O.M., Drensky, V., Nardozza, V.: Subvarieties of the varieties of superalgebras generated by $M_{1,1}(E)$ or $M_2(K)$. Comm. Algebra 31 (1) (2003), 437–461. | DOI | MR

[8] Drensky, V., Formanek, E.: Polynomial identity rings. Birkhauser Verlag, Basel – Boston – Berlin, 2000. | MR

[9] Giambruno, A., Mischenko, S., Zaicev, M.V.: Polynomial identities on superalgebras and almost polynomial growth identities of Grassmann algebra. Comm. Algebra 29 (9) (2001), 3787–3800. | DOI | MR

[10] Kemer, A.R.: Varieties and $\mathbb{Z}_2$-graded algebras. Izv. Akad. Nauk SSSR, Ser. Mat. 48 (1984), 1042–1059, (Russian) Translation: Math. USSR, Izv. 25 (1985), 359–374. | MR

[11] Kemer, A.R.: Ideals of identities of associative algebras. Transl. Math. Monogr., vol. 87, Amer. Math. Soc., Providence, RI, 1991. | MR | Zbl

[12] Krakovski, D., Regev, A.: The polynomial identities of the Grassmann algebra. Trans. Amer. Math. Soc. 181 (1973), 429–438. | MR

[13] Latyshev, V.N.: On the choice of basis in a $T$-ideal. Sibirs. Mat. Z. 4 (5) (1963), 1122–1126. | MR

[14] Olsson, J.B., Regev, A.: Colength sequence of some $T$-ideals. J. Algebra 38 (1976), 100–111. | DOI | MR | Zbl

[15] Sagan, B.E.: The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions. Graduate Texts in Mathematics, vol. 203, Springer Verlag, 2000. | MR

Cité par Sources :