Keywords: affine connection; Ricci tensor; Cauchy-Kowalevski Theorem
@article{10_5817_AM2015_5_265,
author = {Du\v{s}ek, Zden\v{e}k and Kowalski, Old\v{r}ich},
title = {How many are equiaffine connections with torsion},
journal = {Archivum mathematicum},
pages = {265--271},
year = {2015},
volume = {51},
number = {5},
doi = {10.5817/AM2015-5-265},
mrnumber = {3449107},
zbl = {06537729},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-5-265/}
}
TY - JOUR AU - Dušek, Zdeněk AU - Kowalski, Oldřich TI - How many are equiaffine connections with torsion JO - Archivum mathematicum PY - 2015 SP - 265 EP - 271 VL - 51 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2015-5-265/ DO - 10.5817/AM2015-5-265 LA - en ID - 10_5817_AM2015_5_265 ER -
Dušek, Zdeněk; Kowalski, Oldřich. How many are equiaffine connections with torsion. Archivum mathematicum, Tome 51 (2015) no. 5, pp. 265-271. doi: 10.5817/AM2015-5-265
[1] Dušek, Z., Kowalski, O.: How many are torsion-less affine connections in general dimension. to appear in Adv. Geom.
[2] Dušek, Z., Kowalski, O.: How many are affine connections with torsion. Arch. Math. (Brno) 50 (2014), 257–264. | DOI | MR | Zbl
[3] Egorov, Yu.V., Shubin, M.A.: Foundations of the Classical Theory of Partial Differential Equations. Springer-Verlag, Berlin, 1998. | MR | Zbl
[4] Eisenhart, L.P.: Fields of parallel vectors in a Riemannian geometry. Trans. Amer. Math. Soc. 27 (4) (1925), 563–573. | DOI | MR
[5] Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. Amer. Math. Soc., 1978. | MR | Zbl
[6] Kobayashi, S., Nomizu, N.: Foundations of differential geometry I. Wiley Classics Library, 1996.
[7] Kowalevsky, S.: Zur Theorie der partiellen Differentialgleichung. J. Reine Angew. Math. 80 (1875), 1–32.
[8] Kowalski, O., Sekizawa, M.: Diagonalization of three-dimensional pseudo-Riemannian metrics. J. Geom. Phys. 74 (2013), 251–255. | DOI | MR | Zbl
[9] Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic Mappings and some Generalizations. Palacky University, Olomouc, 2009. | MR | Zbl
[10] Nomizu, K., Sasaki, T.: Affine Differential Geometry. Cambridge University Press, 1994. | MR | Zbl
[11] Petrovsky, I.G.: Lectures on Partial Differential Equations. Dover Publications, Inc., New York, 1991. | MR
Cité par Sources :