How many are equiaffine connections with torsion
Archivum mathematicum, Tome 51 (2015) no. 5, pp. 265-271
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The question how many real analytic equiaffine connections with arbitrary torsion exist locally on a smooth manifold $M$ of dimension $n$ is studied. The families of general equiaffine connections and with skew-symmetric Ricci tensor, or with symmetric Ricci tensor, respectively, are described in terms of the number of arbitrary functions of $n$ variables.
DOI :
10.5817/AM2015-5-265
Classification :
35A10, 35F35, 35G50, 35Q99
Keywords: affine connection; Ricci tensor; Cauchy-Kowalevski Theorem
Keywords: affine connection; Ricci tensor; Cauchy-Kowalevski Theorem
@article{10_5817_AM2015_5_265,
author = {Du\v{s}ek, Zden\v{e}k and Kowalski, Old\v{r}ich},
title = {How many are equiaffine connections with torsion},
journal = {Archivum mathematicum},
pages = {265--271},
publisher = {mathdoc},
volume = {51},
number = {5},
year = {2015},
doi = {10.5817/AM2015-5-265},
mrnumber = {3449107},
zbl = {06537729},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-5-265/}
}
TY - JOUR AU - Dušek, Zdeněk AU - Kowalski, Oldřich TI - How many are equiaffine connections with torsion JO - Archivum mathematicum PY - 2015 SP - 265 EP - 271 VL - 51 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2015-5-265/ DO - 10.5817/AM2015-5-265 LA - en ID - 10_5817_AM2015_5_265 ER -
Dušek, Zdeněk; Kowalski, Oldřich. How many are equiaffine connections with torsion. Archivum mathematicum, Tome 51 (2015) no. 5, pp. 265-271. doi: 10.5817/AM2015-5-265
Cité par Sources :