Locally solid topological lattice-ordered groups
Archivum mathematicum, Tome 51 (2015) no. 2, pp. 107-128 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Locally solid Riesz spaces have been widely investigated in the past several decades; but locally solid topological lattice-ordered groups seem to be largely unexplored. The paper is an attempt to initiate a relatively systematic study of locally solid topological lattice-ordered groups. We give both Roberts-Namioka-type characterization and Fremlin-type characterization of locally solid topological lattice-ordered groups. In particular, we show that a group topology on a lattice-ordered group is locally solid if and only if it is generated by a family of translation-invariant lattice pseudometrics. We also investigate (1) the basic properties of lattice group homomorphism on locally solid topological lattice-ordered groups; (2) the relationship between order-bounded subsets and topologically bounded subsets in locally solid topological lattice-ordered groups; (3) the Hausdorff completion of locally solid topological lattice-ordered groups.
Locally solid Riesz spaces have been widely investigated in the past several decades; but locally solid topological lattice-ordered groups seem to be largely unexplored. The paper is an attempt to initiate a relatively systematic study of locally solid topological lattice-ordered groups. We give both Roberts-Namioka-type characterization and Fremlin-type characterization of locally solid topological lattice-ordered groups. In particular, we show that a group topology on a lattice-ordered group is locally solid if and only if it is generated by a family of translation-invariant lattice pseudometrics. We also investigate (1) the basic properties of lattice group homomorphism on locally solid topological lattice-ordered groups; (2) the relationship between order-bounded subsets and topologically bounded subsets in locally solid topological lattice-ordered groups; (3) the Hausdorff completion of locally solid topological lattice-ordered groups.
DOI : 10.5817/AM2015-2-107
Classification : 06B35, 06F15, 06F20, 06F30, 20F60, 22A26
Keywords: characterization; Hausdorff completion; lattice homomorphisms; locally solid topological $l$-groups; neighborhood theorem; order-bounded subsets
@article{10_5817_AM2015_2_107,
     author = {Hong, Liang},
     title = {Locally solid topological lattice-ordered groups},
     journal = {Archivum mathematicum},
     pages = {107--128},
     year = {2015},
     volume = {51},
     number = {2},
     doi = {10.5817/AM2015-2-107},
     mrnumber = {3367096},
     zbl = {06487024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-2-107/}
}
TY  - JOUR
AU  - Hong, Liang
TI  - Locally solid topological lattice-ordered groups
JO  - Archivum mathematicum
PY  - 2015
SP  - 107
EP  - 128
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2015-2-107/
DO  - 10.5817/AM2015-2-107
LA  - en
ID  - 10_5817_AM2015_2_107
ER  - 
%0 Journal Article
%A Hong, Liang
%T Locally solid topological lattice-ordered groups
%J Archivum mathematicum
%D 2015
%P 107-128
%V 51
%N 2
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2015-2-107/
%R 10.5817/AM2015-2-107
%G en
%F 10_5817_AM2015_2_107
Hong, Liang. Locally solid topological lattice-ordered groups. Archivum mathematicum, Tome 51 (2015) no. 2, pp. 107-128. doi: 10.5817/AM2015-2-107

[1] Aliprantis, C.D.: On the completion of Hausdorff locally solid Riesz spaces. Trans. Amer. Math. Soc. 196 (1974), 105–125. | DOI | MR | Zbl

[2] Aliprantis, C.D., Burkinshaw, O.: Positive Operators. Springer, Berlin, Heidelberg, New York., 1985. | MR | Zbl

[3] Aliprantis, C.D., Burkinshaw, O.: Locally Solid Riesz Spaces with Applications to Economics. second ed., Springer, Berlin, Heidelberg, New York, 2003. | MR | Zbl

[4] Arhangel’skii, A., Tkachenko, M.: Topological groups and related structures. Atlantic Press, Amsterdam, Paris, 2008. | MR

[5] Baer, R.: Abelian groups without elements of finite order. Duke Math. J. 3 (1) (1937), 68–122. | DOI | MR | Zbl

[6] Ball, R.N.: Topological lattice ordered groups. Pacific J. Math. 83 (1) (1979), 1–26. | DOI | MR | Zbl

[7] Ball, R.N.: Convergence and Cauchy structures on lattice ordered groups. Trans. Amer. Math. Soc. 259 (2) (1980), 357–392. | DOI | MR | Zbl

[8] Beckenstein, E., Narici, L., Suffel, C.: Topological Algebras. North-Holland, Amsterdam, 1977. | MR | Zbl

[9] Birkhoff, G.: Lattice-ordered groups. Ann. of Math. 43 (2) (1941), 298–331. | DOI | MR

[10] Birkhoff, G.: Lattice Theory. Amer. Math. Soc. Colloq. Publ., vol. 25, Providence, Rhode Island, third ed., 1967. | MR | Zbl

[11] Bourbaki, N.: Elements of Mathematics: Topological Vectors Spaces. ch. 1–5, Springer, Berlin, New York, 1987. | MR

[12] Clifford, A.H.: Partially ordered abelian groups. Ann. of Math. 41 (1940), 465–473. | DOI | MR | Zbl

[13] Fremlin, D.H.: On the completion of locally solid vector lattice. Pacific J. Math. 43 (1972), 341–347. | DOI | MR

[14] Fremlin, D.H.: Topological Riesz Spaces and Measure Theorey. Cambridge University Press, Cambridge, 1974. | MR

[15] Fuchs, L.: Partially Ordered Algebraic Systems. Pergamon Press, Oxford, New York, 1963. | MR | Zbl

[16] Fuchs, L.: Riesz groups. Ann. Scuola Norm. Sup. Pisa 19 (1965), 1–34. | MR | Zbl

[17] Fuchs, L.: Riesz vector spaces and Riesz algebra. Queen's Papers in Pure and Applied Mathematics, Queen's University, Kingston, Ont., 1966. | MR

[18] Goffman, C.: A lattice homomorphism of a lattice ordered group. Proc. Amer. Math. Soc. 8 (1957), 547–550. | DOI | MR | Zbl

[19] Gusić, : A topology on lattice ordered groups. Proc. Amer. Math. Soc. 126 (9) (1998), 2593–2597. | DOI | MR | Zbl

[20] Husain, T.: Introduction to Topological Groups. W.B. Sounders Company, Philadelphia, London, 1966. | MR | Zbl

[21] Jaffard, P.: Contribution à l’étude des groupes ordonnés. J. Math. Pures Appl. 32 (1953), 203–280, (French). | MR | Zbl

[22] Kawai, I.: Locally convex lattices. J. Mat. Soc. Japan 9, 281–314. | DOI | MR | Zbl

[23] Khan, A.R., Rowlands, K.: On locally solid topological lattice groups. Czechoslovak Math. J. 57 (3) (2007), 963–973. | DOI | MR | Zbl

[24] Luxemburg, W.A.J., Zaanen, A.C.: Riesz Spaces, I. North-Holland, Amsterdam, 1971.

[25] Nakano, H.: Linear topologies on semi-ordered linear spaces. J. Fac. Sci. Hokkaido Univ. Ser. I 12 (1953), 87–104. | MR | Zbl

[26] Namioka, I.: Partially ordered linear topological spaces. Mem. Amer. Math. Soc., vol. 24, 1957, p. 50pp. | MR | Zbl

[27] Pierce, R.: Homomorphisms of semi-groups. Ann. of Math. 59 (2), 287–291. | DOI | MR | Zbl

[28] Pontrjagin, L.: Topological Groups. Princeton University Press, Princeton, NJ, 1946, Translated by Emma Lehmer.

[29] Redfield, R.H.: A topology for a lattice-ordered group. Trans. Amer. Math. Soc. 187 (1974), 103–125. | DOI | MR | Zbl

[30] Roberts, G.T.: Topologies in vector lattices. Math. Proc. Cambridge Philos. Soc. (1952). | MR | Zbl

[31] Šmarda, B.: Topologies in $l$-groups. Arch. Math. (Brno) 3 (2) (1967), 69–81. | MR

[32] Šmarda, B.: Some types of topological $l$-groups. Publ. Fac. Sci. Univ. J. E. Purkyne Brno, vol. 507, 1969. | MR | Zbl

[33] Teller, J.R.: On the extensions of lattice-ordered groups. Pacific J. Math. 14 (2) (1964), 709–718. | DOI | MR | Zbl

[34] Willard, S.: General Topology. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970. | MR | Zbl

[35] Zaanen, A.C.: Introduction to Operator Theory in Riesz Spaces. Springer, Berlin, Heidelberg, New York, 1997. | MR | Zbl

Cité par Sources :